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Preface

The resonant interaction of the atomic system with the radiation field is
the main member of the functional circuit of the laser. The redistribution
of the population of the energy levels of the medium, accompanying this
interaction, indicates the principle of the unremovable nonlinearity of the
system. The lasing process is also affected by other nonlinearities, if they
are typical of the media located inside the laser cavity. The nature of the
processes may change as a result of the external effects, accompanying the
variation of the laser parameters with time.

Examination of the role of interactions and effects of this type and
also their influence on the time, spatial and spectral characteristics of la-
ser radiation and the justification of practical methods of controlling the
lasing process are the subjects of tasks in laser dynamics.

In the history of laser dynamics, which is now more than 30 years
old, there are two periods of the most rapid advances. The considerable
interest in the problems of dynamics arose with the construction of the
first solid-state lasers. This interest was stimulated by the fact that the
experimentally detected spike nature of lasing could not be satisfactorily
explained. The universal nature of the spike regime and of the absence of
visible reasons for the occurrence of this regime may have indicated that
the non-stationarity is the only property of the process of induced radia-
tion of condensed active media in the cavity. Therefore, in the initial in-
vestigations, special attention was given to determining the possible mecha-
nisms of the instability of this process.

The first period, which included the 60s of the previous century, was
extremely fruitful for laser dynamics. The basic models were formulated,
their properties were investigated in general features, investigations were
carried out into the conditions of free lasing, active and passive modula-
tion of the Q-factor of the laser, and the fundamentals of the theory of
formation of giant pulses and mode synchronisation were laid. Using the
well-known definition of radiophysics, proposed by S.M. Rytov (in the
preface to his book, Introduction into statistical radiophysics, Nauka,
Moscow, 1966, S.M. Rytov subdivided radiophysics to ‘physics for radio’
and ‘radio for physics’), this period may be regarded as ‘physics for la-
sers’. This period ended at the start of the 70s when it was established that
the spike regimes of solid-state lasers are formed mainly by technical fluc-
tuations of the parameters, and other problems of this type were solved.



xii

The 70s were not marked by any significant achievements in laser
dynamics. The individual ‘grey areas’ remained but it appeared that their
number was smaller. For example, the regime of non-attenuating coherent
pulsations of the single-mode laser, which was mentioned many times by
the theoreticians, could not be realised. Doubts remained regarding the
true reasons for the irregular nature of spike lasing. Only a small amount
of work was carried out in the low-frequency dynamics of multi-mode
lasers. Nevertheless, it appeared that these are only small fragments and
no significant achievements were expected in laser dynamics.

However, these years were marked by the rapid progress in the theory
of nonlinear oscillations (nonlinear dynamics, as it is called now). The
scientific practice included concepts such as determined chaos and strange
attractor. The new concepts of nonlinear dynamics had a significant effect
on developments in greatly differing areas of science.

In this period, it was found that the laser belongs to the group of
systems which are capable not only of demonstrating complicated behaviour
but are also greatly suitable for the examination of general relationships of
nonlinear dynamics. This led to a new and rapid progress in the dynamics
of lasers, which started in the 80s and took place, in contrast to the first
period, under the name ‘Lasers for physics!’. The renewed attention paid
to the possibilities of examination of the determined chaos in lasers re-
sulted in the first experimental successes in 1982. Now, we have a large
amount of original literature on the subject, including both experimental
and theoretical investigations of complicated lasing regimes. This aspect
of laser dynamics was described in the book Dynamics of Lasers, by C.
Weiss and R. Vilaseca, Weinheim, New York, 1991.

However, the number of monographs on laser dynamics was smaller.
They all were published in the period to the 80s and were written in most
cases by Soviet authors. The latter cannot be regarded as surprising be-
cause the contribution of Soviet authors to laser dynamics was significant.
In this connection, it is important to mention the monograph Molecular
Generators by A.N. Opaevskii (Nauka, Moscow, 1964),  the book by K.G.
Folin and A.V. Gainer Dynamics of free lasing of solid-state lasers (Nauka,
Novosibirsk, 1979), the book Dynamics of radiation of semiconductor quan-
tum generators by L.A. Rivlin, and the book Dynamics and emission spec-
tra of semiconductor lasers, by L.A. Rivlin, et al (Radio i svyaz’, Moscow,
1983). This list should be supplemented by a later monograph Self-oscil-
lations in lasers, by A.M. Samson et al (Nauka i tekhnika, Minsk, 1990).
In each book special attention is given to the specific type of laser or spe-
cific operating regime.

A significant contribution to the dynamic theory of lasers by the well-
known German physicist H. Haken has been reflected in his monograph
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Laser light dynamics published in the West in 1985 (Amsterdam, North
Holland). A list of foreign publications on the subject was supplemented
in 1997 by the book ‘Theoretical problems in cavity nonlinear optics (Cam-
bridge: Cambridge University press).

The attempts for systematization of the material on the subject and
explanation of the general situation were explained in the monograph by
the author of the present book, Dynamics of quantum generators. How-
ever, events requiring that attention be paid to different subjects occurred
with time. The true position of a number of studies, which were previously
disregarded, was found. The positions of other studies, on the other hand,
proved to be less important than previously thought. Therefore, retaining
this material from the book Dynamics of quantum generators which with-
stood the test of time, the author of the present book published a new book
under the name Principles of laser dynamics. The book was published in
1995 (Amsterdam: North Holland). Russian readers could not obtain this
book because of the extremely high price and inefficient advertising.

In this monograph, the free lasing of lasers in different conditions is
examined in detail. In the chapters, concerned with the subject (chapters 3
to 5), special attention is given to the stationary states and their stability,
the behaviour of lasers in the unstable region, the characteristics of regu-
lar and random self-modulation processes and the nature of mechanisms
responsible for them.

The processes in the lasers, accompanying changes of the parameters
with time, are the subject of chapter 6. Special attention is given to the
response of the laser to low-intensity low-frequency modulation of the
parameters. Problems of the resonant amplification of modulation, transi-
tion to the nonlinear regime, random response to the periodic effect, spike
lasing under the effect of changing geometry of the cavity and the drift of
temperature of the active element are studied.

The behaviour of the laser may change quantitatively if its optical
elements show nonlinear properties. More detailed investigations have been
carried out into the effect of a saturated absorber, leading to the instability
of stationary lasing and ensuring, in specific conditions, the passive modu-
lation of the Q-factor of the resonator. Less attention has been paid to the
effect, on the processes in the laser, of other nonlinear effects, in particu-
lar self-focusing, which is also capable of having a strong effect on lasing
dynamics. All this is discussed in chapter 7 of the book.

The five main chapters are preceded by two chapters of introductory
nature. In one of the chapters, essential information is given on quantum
generators, requirements are formulated on the main elements of the laser,
and the extent to which these requirements are fulfilled in the generators
of different types is shown. The information on the types of dynamic
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behaviour of lasers in relation to the ratio between the parameters is also
provided. In the second introductory chapter, the most general mathemati-
cal models, used in the semiclassical laser theory are presented. Discus-
sion of idealisations and simplifications, used in different specific situa-
tions, and also the ranges of the applicability are transferred to the chap-
ters in which the specific models are analysed. It is assumed that the reader
is acquainted with the main considerations of the modern theory of nonlin-
ear fluctuations. It is necessary, this information may be found in, from
various books and other sources, presented in the literature list. In this
connection, it is again necessary to mention the monograph by C. Weiss
and R. Vilaseca.

It is also important to mention the sections of laser dynamics which
for some reasons have not been reflected in this monograph. For example,
no mention is made of the concepts relating to the time evolution of the
spatial structures in the laser emission field. The section of nonlinear dy-
namics of the optical systems is being developed. The author decided not
to include in the monograph the material on different methods of lasing of
the giant pulses because no significant changes have been made in this
area of quantum electronics from the date of publication of his previous
book. This may also be said of the theory of sweep lasers.

Finally, it is important to also mention inverse problems of laser dy-
namics. This larger area of activity must be mentioned, but only small
parts have been developed. At the same time, the problem of extracting
information on the laser parameters and individual intra-cavity elements
are of considerable practical importance and, in this case, special use is
made of new concepts based on the advanced concepts of nonlinear dy-
namics.

Evidently, it is clear to the reader that the book is a physical rather
than mathematical version of the subject. This is justified by the fact that
in this case we are not concerned with nonlinear dynamics in general but
with laser dynamics, and this does not correspond to the scientific activity
of the author.

Laser dynamics is a rapidly developing science in which events take
place very frequently. In these conditions it is obvious that the material in
the book may not be complete and the situation will become worse with
time. Nevertheless, the already existing system of ‘eternal values’ makes
it possible to hope that the usefulness of the book will not decrease very
rapidly.
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Quantum Oscillators: General Considerations

Chapter 1

Quantum Oscillators: General
Considerations
This chapter should not be treated as detailed analysis of the principles of
the quantum electronics. The reader can find them in [1–9]. Below there is
given only some information related to the dynamical laser behaviour.

1.1. Principle of Operation and Practical Implementation

There are three problems, which led to the advent of quantum electronics:
lowering the noise threshold of amplifiers, raising the stability of oscilla-
tors, and generating millimetre and shorter waves. In solving these prob-
lems the strategies of classical electronics encountered fundamental diffi-
culties; many of them were overcome by using stimulated emission in sys-
tems of bound particles.

1.1.1. Induced and Spontaneous Emission
The possibility of enhancing electromagnetic fields by quantum systems
is based on the induced (stimulated) emission of radiation. Under the in-
fluence of incident radiation a quantum system such as an atom, molecule
or a crystal is capable to pass to a lower energy state by emitting a photon.
The induced emission is fully identical to the incident radiation. The in-
verse of induced emission is the absorption of a photon when the quantum
system makes a transition to an upper energy level.

In quantum electronics we deal with a medium composed of a large
number of molecules rather with a single molecule. In thermal equilibrium
the higher the energy of molecular levels the lower their population. Since
downward and upward induced transitions have equal probabilities, media
in thermal equilibrium are net absorbers. An excess of transitions with
emission over those with absorption can be achieved only in nonequilibrium
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systems, in which the upper level population exceeds the population of a
lower level. Such a population inversion of a couple of levels is sufficient
provided the energy level spacings are unequal. The last condition is re-
quired to ensure that the monochromatic field resonant with the inverted
transition is not resonant with other transitions, which have an excess of
absorption.

The unequal level spacing of the energy spectrum permits a simplified
description of a quantum system with a minimum number of levels taken
into account. A two-level approximation is often successfully used in quan-
tum electronics.

The simplest version of a quantum amplifier is a layer of material, in
which a population inversion is achieved on the chosen transition in one
way or another. An electromagnetic wave of the proper frequency is am-
plified when it propagates in such a medium. More effective use of the
amplifying medium can be achieved by slowing down the wave or by ar-
ranging for multiple passes through the active element, by placing in a
cavity. Thus, in quantum electronics a resonant cavity is used to achieve
not only frequency selection but also feedback.

Induced emission leads to an increase of the field energy density inside
the active medium. Various processes of the field dissipation and the field
emission into the ambient space act in opposite manner. When these pro-
cesses equilibrate each other or the induced emission dominates the dissi-
pation, such a device operates as a generator of radiation.

Unlike the induced photons, the spontaneously emitted photons are not
correlated with the field in the laser medium volume. Hence the spontane-
ous emission processes play the role of a natural source of noise, which
limits sensitivity of quantum amplifiers and the stability of oscillators, as
well as the role of triggering mechanism of the sustained operation as a
coherent generator of radiation. The spontaneous emission process deter-
mines the finite lifetime of an excited isolated molecule and the related
natural width of the spectral lines.

The active medium, or the working substance, of a quantum amplifier
or an oscillator should ensure the needed gain with reasonable consump-
tion of energy for the population inversion. The gain is given by

              )(trgain ba NNk −=σ ,           (1.1)

where σ
tr
 is a quantity termed the quantum transition cross-section, which

describes the active molecule, N
a
–N

b
 is the population difference on the

working levels, defined both by the properties of the substance and the
potential of the pumping system. Further we need a relation [3]
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0
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0
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d= ,                      (1.2)

which express the transition cross-section in terms of other constants of
the medium such as the dipole moment d, the frequency of radiation ω

0

and spectral linewidth δω
0
.

A large transition cross-section means a small lifetime of the upper
level, which impedes the accumulation of population there. In practice,
both alternative ways are used to reach the necessary gain: the creation of
large overpopulation on a metastable upper level when transition has a
small cross-section, or the use of a large cross-section with relatively weak
population on the upper level. Typical media of the first kind are the weakly
doped crystals such as ruby or yttrium aluminium garnet and glasses with
the Nd3+ ion as impurity. The active media of the second type are exempli-
fied by organic dye solutions. In any case, the pumping energy must be
used effectively, characterized by the fraction of excited molecules brought
finally to the upper energy level. This gives a general requirement for a
useful working substance – high quantum yield.

Since the gain is determined by the population difference rather than
by the upper level population, active media with fast depletion of the lower
level are advantageous. Rapid depletion is possible if this level is higher
than the ground state by k

B
T or more, as in crystals and glasses doped by

neodymium. An opposite example is a medium with self-limited transi-
tions, which terminate on a metastable lower level. Examples of such me-
dia are metal vapours and erbium-doped crystals. Generally speaking, ruby
is also of the second type since its lower laser level corresponds to the
ground state, but its depletion is combined with the pumping process. Self-
limitation of the transition hinders the use of such material for CW opera-
tion.

1.1.2. Methods of Producing an Inverted Population
Quantum electronics began with centimetre wavelength molecular beam
masers [10, 11]. The term maser, proposed in [11], came to denote micro-
wave quantum devices using the principle of amplification by stimulated
emission. An attempt to introduce the term ‘optical maser’, which was
made in the seminal theoretical paper [12], was not a long-time success.
After the practical breakthrough into the optical range [13, 14] a new acro-
nym laser was adopted. In turned out to be extremely stable, such that
even nowadays we read and hear about ‘X-ray lasers’, ‘γ-lasers’ and even
‘submillimetre lasers’! Habit began to dominate sensibility, but this is not
a rare case with the terminology. Nevertheless, wavelength range is one
basis for classification in quantum electronics. Another basis for classifi-
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cation is the material phase of the medium (gas, liquid, solid) and a third
basis is the concrete process, which creates the population inversion in the
laser medium.

Brief comments should be made on lasers with condensed and gaseous
active media. The difference is due to the greater interaction between ma-
terial particles with increasing particle density. This leads to greater ho-
mogeneous broadening of the spectral lines in condensed media. Con-
versely, the higher mobility of gas molecules is exhibited in the Doppler
broadening of transitions.

The third basis of classification needs a somewhat longer discussion.
There are lasers with optical, electrical, thermal and chemical pumping.
For a complete description of the system we should also specify the type
of the process in the medium, which leads to the inversion. This can be
photon absorption, collision of a molecule with an electron or a molecule
of a different species, a chemical reaction or a dynamical process like mol-
ecules separation by their motion between domains of different physical
conditions.

Optical pumping is undoubtedly the most common way to achieve a
population inversion. When a photon is absorbed directly by an active
molecule, bringing it finally to the upper working level, we are dealing
with an optical pumped laser – that of solid-state, liquid or gaseous type.
The laser provides a direct transformation of the pumping light to the laser
emission. In particular, another laser can serve as a source of pumping.

Direct transformation of electric energy to laser emission occurs in an
injection semiconductor laser: this is an example of a device with electric
pumping.

Very often, the pumping energy is transformed to laser emission in a
more complicated way than in the cases cited above. Suppose that the en-
ergy required for the laser operation is provided by the chemical reaction.
It is important that one of the reaction products be formed in the excited
state but it is not necessary that exactly this product be the active compo-
nent of the laser medium. The excited product can serve as an auxiliary
gas to transfer energy to the working gas molecules through collisions.
Such a laser should be called a collisional laser with chemical pumping.

Following the same principle, gas discharge lasers should be catego-
rized as collisional lasers with electrical pumping. The discharge elec-
trons, accelerated in a static or high-frequency (rf) electric field, impact
energy to the molecules they collide with. This can be molecules of the
working gas but often it is more advantageous to convey the energy through
an intermediate stage of excitation of an auxiliary gas, thus, for example,
neon and carbon dioxide are excited in discharges with higher efficiency
through intermediary gases, helium and nitrogen, respectively.
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Differences in relaxation times for different molecular states offer the
opportunity to obtain an inversion during the time of establishing the ther-
mal equilibrium after a fast variation of temperature of the medium. Fast
cooling of a gas can be obtained by the methods of gas dynamics using
adiabatic expansion. In carbon dioxide, antisymmetrical vibrations are
‘cooled’ more slowly so that under the favourable conditions the popula-
tion of these vibrational levels can exceed the population of other vibra-
tional levels, at least for a while.

To obtain the necessary inversion in a gas flow, a sufficient number of
molecules must initially be brought to the excited states. In a gas-dynamic
laser with thermal pumping this can be achieved by preheating the gas. A
similar result can be obtained in other ways using, for example, optical
pumping or by excitation in a gas discharge. Then we are dealing with a
gas-dynamic laser with optical or electrical pumping, respectively.

Within the framework of this classification we should also mention beam
masers. In such devices, inversion is achieved by means of the spatial sepa-
ration of molecules in different energy states, when the molecular beam is
transmitted through a region with a nonuniform electric or magnetic field.
The degree of inversion is determined by the parameter of the sorting sys-
tem and by the temperature to which the gas is heated in the beam source.

Making other combinations of the form of consumed energy and the
mode of the active molecule excitation, it is possible to obtain a complete
list of ways to create the population inversion.

One significant feature of all processes discussed so far is that they are
noncoherent. An exception is optical pumping directly to the upper level
by means of a laser source. The specific point is that the action of coherent
pumping is not merely the variation of population distribution but it leads
to more complicated nonlinear processes in the active media, contributed
both by pumping and the laser field.

1.1.3. Amplification in Quantum Systems without Population
Inversion
We have mentioned above that amplification could be achieved only in
nonequilibrium media. The simplest example of such a medium is a two-
level atomic system with population inversion. But the set of variables
characterizing the state of the medium is not limited by populations of the
energy levels, and inversion does not present the unique type of
nonequilibrium state that gives amplification.

We can illustrate this using the example of a paramagnetic, which is a
medium consisting of atoms possessing magnetic properties. The energy
levels of the elementary magnetic dipole in a static external magnetic field
correspond to two orientations of the dipole: parallel to the magnetic field
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(lower level) and antiparallel to the magnetic field (upper level). In the
state of thermal equilibrium the majority of the dipoles oriented parallel to
the field, i.e. they occupy the lower energy level. In other words, the re-
sultant magnetization vector is oriented parallel to the magnetic field. The
population inversion is equivalent to reorientation of the magnetization
vector. However, generally speaking, the angle between the field and mag-
netization vector can be any and not only 0 and π. When inclined at any
angle, the magnetization vector begins to precess around the magnetic field
with the frequency of paramagnetic resonance, which is proportional to
the difference of energies of oppositely oriented magnetic dipoles ω

0 
=

2µH. However, it is impossible to bring in correspondence the precessing
magnetic dipole with a concrete energy level. Here we meet a new degree
of freedom presented by the transverse component on magnetization. It is
clear that the presence of precession means that the medium is not in equi-
librium state, but this state is quite different from population inversion. It
is possible to create such a state putting the paramagnetic sample in the
magnetic field oscillating with frequency ω

0
.

We can generalize all what has been said about paramagnetic to a two-
level system of any origin. When placed in the resonance electromagnetic
field, the quantum system can be converted to the state analogous to the
state of precession, which is not characterized completely by the popula-
tions of the energy levels. In this case we speak about coherent superposi-
tion of states with nonzero values of nondiagonal elements of density ma-
trix. Being in coherent state, the two-level system is capable to emitting at
the transition frequency after the excited field is switched off. This phe-
nomenon does not have any practical significance: the energy is extracted
in the same form as spent but in smaller value.

Let us turn to more complicated situation with the three-level system.
We can come to such a system, in particular, splitting the lower level into
two close spaced sublevels (Fig. 1.1). The coherent superposition can be
created between these sublevels, 1 and 2. Since ω

21
<< ω

32
 and ω

21
<< ω

31
, it

can be called the low-frequency coherency. Such kind of nonequilibrium
drastically changes the situation in the tree-level system, including the
transition probabilities between the lower sublevels and the upper level.
Atoms in a certain superposition state become uanble to pass to the upper
level. It is similar to light diffraction on two slits when some areas in the
space remain dark. The same is in Λ-scheme: due to existence of two tran-
sition routes (1→3 and 2→3), the upper level remains empty in spite of
the presence of the resonance field! This means that absorption at frequen-
cies of the optical transitions 1→3 and 2→3  (Fig. 1.1) is absent. But if the
atoms in the lower states do not absorb, then even a small amount of upper
level population is enough to make the media amplifying ones. The advan-
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tage of this method is that existence of low-frequency coherence leads to
weakening of request to population of the upper level.

This idea was suggested and substantiated in Ref. [15]. Similar ideas
were made independently in Refs. [16, 17]. In spite of the existence of
forerunners, to which Refs. [18, 19] belong, the real progress in the field
of inversionless amplification was stimulated by three fundamental stud-
ies [15–17] published in 1988 and 1989.

It is unlikely to think that lasers without population inversion, though
they are realised in laboratories [20, 21], can compete with the traditional
lasers in the applied sphere. But sometimes the inversionless amplifica-
tion is of practical interest, in particular when it is difficult in principle to
create population inversion. First, this is related to the problem of lasers in
the domains of very short wavelength: vacuum ultraviolet, X-rays and
gamma-rays [22].

1.2. Time-Dependent Processes in Quantum Oscillators

In addition to the three bases for laser classification discussed above, there
is one more classification scheme, which is directly related to the dynamic
properties.

1.2.1. Dynamic Properties of Lasers and Their Relation to
Relaxation Rates
Induced transition under the action of an electromagnetic field is not the
only way to make a quantum system to change its state. The lifetime of an
excited state has a natural limit, defined by a spontaneous downward ra-
diative transition. Meanwhile, there are nonradiative transitions caused by
intermolecular collisions, interaction with lattice vibrations, etc.
Nonradiative processes and spontaneous emission can be viewed as the
result of the interaction of a limited number of isolated degrees of freedom
(dynamical system) with all remaining degrees of freedom (thermal reser-
voir). Such processes are often called relaxation processes since they pro-
mote the establishment of an equilibrium state of a dynamical system.

Fig. 1.1. Three-level Λ-scheme: mono-
chromatic fields E

13
 and E

23
 create a

coherent  superposition of states 1 and
2, the transitions from which to the level
3 under the action of these fields are
completely suppressed. This establish
the prerequisite for lasing without
inversion.
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Relaxation processes have a decisive effect on the dynamical proper-
ties of a laser since they define the ability of each degree of freedom of
this complex oscillation system to react to changes of the situation. A two-
level medium is described by two relaxation parameters: the population
difference relaxation rate γ||, and the atomic polarization relaxation rate γ⊥ ,
which is the halfwidth of the spectral line, γ⊥ = δω

0
/2. The inverse of these

quantities are often used: the time of ‘longitudinal’ relaxation T
1
=1/γ|| and

that of ‘transverse’ relaxation T
2
=1/γ⊥

1. If a two-level approximation of
the medium is insufficient, then the description should involve the relax-
ation parameters of other transitions. For the complete set of laser charac-
teristics we should add so-called ‘photon lifetime’, which is related to the
cavity Q-factor by the relation T

c
= Q/ω

c
. By analogy with the laser me-

dium, we can make use of the decay rate κ =1/2T
c
, which coincides with

δω
c
/, the half of the energy passband of the cavity.
When speaking about multimode lasers, the set of time parameters should

be supplemented with a characteristic period of intermode beats T
0
 = 1/

∆ω, which is equal to the round trip time in the case of longitudinal cavity
modes.

We will call the processes in the laser the slow processes or the fast
processes and, correspondingly, we will call the dynamics the low-fre-
quency or the high-frequency depending on whether their spectrum matches
the cavity passband. Of course, the fast processes are due to mode inter-
ference. The slow (low-frequency) processes depend on relationship be-
tween the relaxation parameters γ

||
, γ⊥  

and κ.
To make the following description more pictorial we turn, running ahead,

to one of the basic models of the dynamical laser theory – the set of Lorenz–
Haken equations:

d
( )

d

E
P E

t
κ= −

         d
( )

d

P
nE P

t
γ⊥= −         (1.3)

||

d
( )

d

n
A n PE

t
γ= − −

The variables of this set of equations are the amplitude of the electric
field E, the amplitude of the medium polarization P, and the population
difference (inversion) n. For the purpose of simplification the notations

1The terms and symbols are taken from the magnetic resonance theory where the analogies
for the population difference and polarization are the longitudinal and transverse
components of magnetization with respect to the static magnetic field.
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all the variables are normalized. The set of coefficients include, besides of
three relaxation constants, also the pumping parameter A. The Lorenz–
Haken model corresponds to a single-mode traveling-wave laser with a
homogeneously broadened two-level laser.

Four important cases of relations between the coefficients of the Lorenz-
Haken model can be identified [23, 24] that correspond to four dynamical
classes of lasers.

Class A:                       || ,κ γ γ⊥<<                                  (1.4)

The active medium follows without delay all the field variations. Both
material variables, the inversion and the polarization, can adiabatically be
eliminated from the set of equations.1 The dynamical phase space is one-
dimensional and the family of attractors can be represented only by the
fixed points. The transient processes in the laser are aperiodic.

Class B:                      ,||γκγ >>>>⊥                                  (1.5)

Only the polarization follows the field without delay and it is the only
variable eliminated. The phase space is two-dimensional and allows, be-
sides fixed points, for the existence of closed (periodic) trajectories termed
limit cycles. The transient process can be oscillatory.

Class C:                            ~κ γ ⊥  (1.6)

All the variables have the equal rights. The presence of more than two
dimensions means that the phase space can contain more complex attractors
including strange attractors [25, 26].

The systems that satisfy the condition (1.4) are sometimes called adia-
batic systems, and those meeting the condition (1.6) are called nonadia-
batic systems. Meanwhile, the terms ‘class A’, ‘class B’ and ‘class C’ la-
sers have often been used recently following Arecchi. We should add one
more class.

Class D:                      || ,κ γ γ⊥>>    (1.7)

1The concept and procedure for adiabatic elimination of the variables will be discussed in
Section 3.1.2. But, running ahead, it should be noted that the relations between the
relaxation constants give only the necessary conditions for adiabatic elimination of this or
that variables. Generally speaking, one should take into account also the rate of the induced
transition, which can not exceed the largest of the relaxation constants. The last condition
limits from above the intensity of field, interacting with the laser medium, and also the
pumping parameter A.
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In this case the field is an inertialess variable, which follows the state of
the atomic system and should, therefore, be adiabatically eliminated. The
main data characteristic for the mentioned above four classes are presented
in the Table.

In the multimode lasers, we need to complete the list of important param-
eters by the intermode frequency space ∆ω. The large enough value of ∆ω
means that the populations of the working levels are not capable of react-
ing efficiently to the beats and this fact justify the use of the ordinary rate
equations. If the mode frequencies are close to each other, it is necessary
to take into account the oscillations of population with the intermode beat
frequencies and use more complicated laser models with phase-sensitive
interaction.

1.2.2. Widespread Types of Lasers
There are few representatives of class D. They include only beam masers
among which ammonia and hydrogen masers are best known. The operat-
ing wavelength 1.25 cm corresponds to the strongest line in the inversion
ammonia spectrum, related to the state with the quantum numbers of rota-
tional angular momentum J = 3 and its projection onto the symmetry axis
of the molecule K = 3. The molecules are sorted by states when passed
through an inhomogeneous electric field.

The spontaneous emission transition probability, proportional to λ–3, is
negligibly small for centimetre wavelengths. The collisions between the
beam molecules in a vacuum are also rare. Hence, the inertial properties of
the active medium are defined by the transit time of the molecules through
the interaction space, i.e. the maser cavity. The transit time is of the order
of 10–4 s, i.e. it exceeds noticeably the photon lifetime in a microwave
cavity (10–6 s or less) [27]. Thus, inequality (1.7) is satisfied.

Recently, the question has been discussed concerning the possibility of
creating lasers operating in the super-radiation regime [28, 29]. It is nec-
essary to satisfy the condition κ >>γ⊥ , which means that these lasers belong
formally to class D. However, the enormously high probability of radia-
tive processes, which must exceed the rates of all relaxation processes,
including κ, is also important.

Class C. The approximate equality of the cavity passband and the ho-

Dynamical class 
Relations between the 
relaxation rates 

Adiabatically eliminated 
variables 

Dimension of the 
model 

A κγγ >>⊥ ||,  nP,  1 

B 
||γκγ >>>>⊥  P 2 

C κγ ~⊥  — 3 

D 
||, γγκ ⊥>>  E 2 
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mogeneously broadened gain linewidth, which is implied by the relation
(1.6), is not typical for lasers. Using the relation

loss
c

c

Q L

ωδω Π= =

we obtain the passband δω
c
/2π = 5 MHz, for the typical parameters of the

cavity: length L = 100 cm and single-pass losses Π
loss

 = 0.1. Such a small
homogeneously broadened width of the spectral lines is possible only in
rarefied gases. Meanwhile, laser action will require that the gain in these
lines be large enough. These are reasons for which the class C was consid-
ered to be empty for a long time. Noble gas-discharge lasers using infrared
transitions were among the first ones to fit into this class.

The 3.51 µm xenon line is notable from the viewpoint of the attainable
amplification. Its natural linewidth is 4.6 MHz, which corresponds to the
lifetime of the laser levels t

a
 = 1.2·10–6 s and t

b
 = 3.3·10–6 s. The spontane-

ous decay of the upper level is mainly accompanied by a transition to the
lower laser level. The additional homogeneous broadening due to colli-
sions of xenon atoms  (11.5 MHz/Torr Xe) with the partial pressure of tens
of millitorr is negligibly small. For controlled action on the homogeneous
linewidth, helium is introduced to the discharge tube to ensure the line
broadening to 18.5 MHz/Torr He. In a finite range of pressures the relation
(1.6) can be satisfied by sacrifice of the cavity Q-factor, which requires
additional amplification.

The situation with laser transitions is similar for various noble gases
[30]. It will be considered below in more detail using neon as an example.
We only note that both laser levels are high enough. Since the excitation in
a gas discharge is not a selective process, the upper levels can be occupied
by atoms with different velocities. This is the reason why the gain line
broadening is inhomogeneous. The Doppler width of the 3.51 µm Xe line
is 110 MHz.

The interatomic collisions result both in dephasing of the atomic inter-
action with the radiation field and in variation of the atom velocity. The
first factor is exhibited through the homogeneous broadening while the
second through spectral cross-relaxation. The cross-relaxation rate is esti-
mated to be 10–6 s–1 [31]. The remaining data on xenon are taken from
Refs. [31, 32].

The relation (1.6) can be realized in the He–Ne laser for the wave-
length 3.39 µm, although it is more difficult than in the 3.51 µm Xe line
because of weaker amplification [33].

Other class C lasers are the molecular gas FIR (far infrared) lasers. The
active media in such lasers are HCOOH [34], CH

3
F [35], CH

3
OD [36],

CH
2
F

2
 [37] and some other gases. Ammonia again comes first [38–41].
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The ammonia FIR laser is optically pumped through a vibrational tran-
sition matched with the operating frequencies of a CO

2
 or N

2
O laser. The

amplification is achieved on the rotational transitions. Fig. 1.2 shows a
fragment of the ammonia-like energy spectrum. A three-level scheme is
apparent if the fine structure is neglected.

For FIR lasers, the generated wavelength greatly exceeds the pumping
wavelength. For example, the rotational transition aR(7,7) in the 14NH

3

molecule corresponds to λ ≈ 81 µm, while the vibrational transition a(8,7)
with λ = 10.8 µm, matched with the N

2
O laser frequency, is used for pump-

ing. The difference is still greater in the 15NH
3 
laser: the laser transitions

have the wavelength 374 µm (aR(2,0) line) and 153 µm (aR(4,4) line) while
CO

2
 lasers with the wavelength 10 µm are used for pumping.

The use of monochromatic pumping in the form of the travelling wave
permits the selective excitation of molecules with definite velocity projec-
tion onto the wave vector to save the gain line from Doppler broadening.
The homogeneous broadening at such long wavelength depends solely on
intermolecular collisions. The linewidth of 1 MHz, realized under experi-
mental conditions, allows the relation (1.6) to be satisfied even in a high
Q-cavity. There are no reliable data on the relaxation times of the level
populations.

The ability to provide a very high gain in a narrow homogeneous line
under laser pumping is inherent not only to rotation transitions in chosen

Fig. 1.2. Vibrational–rotational transitions in a molecular spectrum (a) and the three-level
scheme explaining the principle of operation of a laser-pumped molecular FIR laser (b).

a                                          b
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molecules. Similar effects can also be achieved also on some vibration
and electronic transitions and the total number of such transitions in dif-
ferent gases is estimated as 106 [42].

Class B is represented by solid-state, semiconductor and some types of
low-pressure molecular gas lasers. Among the latter the most popular is
the carbon dioxide laser.

Ruby (Cr3+:Al
2
O

3
) rivals ammonia in fame in the history of quantum

electronics. The transitions between the Cr3+ ion spin levels are used in
paramagnetic masers. Ruby was the material in which visible laser action
was demonstrated for the first time in history. A system of the energy lev-
els of Cr3+ impurities present in an Al

2
O

3
 crystal is shown in Fig. 1.3. Omit-

ting the details, we are dealing essentially with a three-level scheme.
The spontaneous emission spectrum of ruby exhibits two narrow in-

tense lines that correspond to transition from the metastable 2E state to the
ground state 4A

2
. At the room temperature (300 K) the R

1
 line has a maxi-

mum at λ = 0.6943 µm and the R
2 

line at λ  = 0.6927 µm. Cooling the
crystal shifts the R lines towards shorter wavelength. The metastable 2E
levels can be excited through the wide bands, 4F

1
 and 4F

2
, connected to 2E

by radiationless transitions. Electrons pass from the 4F
2 

 band to the 2E
levels in a time of t

32
 = 5·10–8 s or emit spontaneously, returning to the

ground state in t
31

 = 2·10–7 s. The spontaneous decay of the 2E state is
characterized by a time constant t

21
 = 3·10–3.

The E  and 2 A  sublevel populations are established in accordance
with the Boltzmann distribution for thermal equilibrium. Since the sublev-
els are spaced by 29 cm–1, their successive population difference is 15%
for 300 K. The relaxation time between E  and 2 A  does not exceed
10–7 s. Thus, typically the laser does not operate on the R

2
 line since the R

1

Fig. 1.3. Energy-level diagram of Cr3+ ion in ruby (a) and the scheme explaining the
principle of operation of an optically pumped three-level solid-state laser (b).
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lasing reduces the E2  level population to a value below the laser thresh-
old.

The R
1
 linewidth depends on the number of impurity ions in the host. In

a pink ruby with the Cr3+ concentration of the order of 1019 cm–3 for 300 K
the R

1
 linewidth is nearly 10 cm–1 or 3·1011 Hz. This line narrows as the

crystal is cooled. It is well known that the sapphire intracrystalline field
splits the Cr3+ ground state into two components spaced by 0.38 cm–1. Con-
sequently, the R

1
 line is split even for 77 K, for which of a separate compo-

nent is 0.3 cm–1. At high temperatures, the main contribution to linewidth
is thermal oscillations of the crystal lattice, and the line can be considered
a homogeneously broadened one. The cross-section of the transition, cor-
responding to the R

1
 line, is σ

tr
 = 10–20 cm2.

It is an obvious drawback of the three-level ruby scheme that the laser
transition uses the ground state as a basis. Half of the chromium ions are
launched upwards with the only purpose of making the populations equal.
Only the additional excited ions produce the laser effect.

Active media, which operate on a four-level scheme, are free of this
drawback. They include neodymium doped crystals and glasses. The opti-
cal ion spectra of rare-earth elements are due to the transitions within
nonfilled inner shells, screened by the outer shell from the external ef-
fects. Introducing the same ion into different materials, it is possible to
vary the fine structure but the line position will not undergo any notice-
able changes.

The energy level diagram of a Nd3+ ion is presented in Fig. 1.4. The
4F

3/2
 level is metastable. Spontaneous transitions from this level to the 4I

levels are exhibited as four spontaneous emission lines. The most intense
line, 4F

3/2
→4I

11/2
, has its maximum near λ  = 1.06 µm. The 4I

11/2
 level is

elevated over the ground level by about 2000 cm–1, which considerably
exceeds  k

B
T.1 This line is most favourable for laser action. Like the other

lines, it has a structure stipulated by the splitting of the initial and final
states by the electric field of the surrounding host ions. The metastable
level 4F

3/2
 is split into two sublevels, and the level 4I

11/2
 is split into six

Stark sublevels. Without a resonator comprising tunable elements, only
the strongest spectral component is involved in the laser action. In the
case of yttrium aluminium garnet with neodymium for 300 K this compo-
nent has the following characteristics: δν

0
 = 6 cm–1, T

1
 = 2·10–4 s, σ

tr
 ≈

10–18 cm2. Actually, the gain line 1.06 µm consists of two close compo-
nents that correspond to different pairs of Stark sublevels [43]. Strictly
speaking, this line should be considered as inhomogeneously broadened
and in some contexts this feature is become apparent.

1The temperature 300K corresponds to k
B
T/� of the order of 200 cm–1.



15

Quantum Oscillators: General Considerations

In glasses, the ordered structure is absent and the implanted ions inter-
act differently with their local environments. That is why the Stark com-
ponents vary slightly in frequency from ion to ion and, consequently, the
fluorescent line becomes inhomogeneously broadened. In silicon glass, a
widely used laser material, the transition 4F

3/2
→4I

11/2
 is characterized by

the cross-section σ
tr
 ≈ 10–20 cm2, the metastable level has a lifetime T

1
 =

2·10–4 s and the inhomogeneous fluorescent linewidth δν
inh

 = 300 cm–1.
The fraction of homogeneous broadening is an order of magnitude less.

A carbon dioxide laser is the next class B representative. The linear
symmetrical CO

2
 molecule has three basic internal modes of vibration:

symmetric stretch with the distance between levels ν
1
=1388.17 cm–1, bind-

ing with ν
2 
= 667.4 cm–1 and antisymmetric stretch with ν

3 
= 2349.16 cm–1.

The state of the molecule is generally described by a set of quantum num-
bers referring to the normal modes: V

1
V

2
lV

3
. The quantum number l indi-

cates the double degeneracy of the bending vibrations.
The main role in the population redistribution over the vibrational and

rotational levels of CO
2
 is played by collisions. The possibility of obtain-

ing an excess population of the 0001 state is due to the fact that the latter
decays slower than the 1000 or 0200 states. This is because the energy trans-
fer from one vibrational degree of freedom to another is slow compared to
the time of onset each of them. The fast decay of the 1000 state is contrib-
uted by the Fermi resonance, i.e. the coincident positions of 1000 and 0200
states. Under these conditions, the decay rates of the 0100 state are a deci-
sive factor. Helium can be introduced into the discharge to increase this
decay rate.

Fig. 1.4. Energy-level diagram of Nd3+ ion (a) and the scheme explaining the principle of
operation of an optically pumped four-level solid-state laser (b).

a b
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The pumping of the upper laser level 0001 is most effective with nitro-
gen molecules. The first excited vibrational level of the N

2
 molecule has

an energy close to that of the CO
2
 molecule at the 0001 level. This nitrogen

level is metastable, highly populated in a gas discharge, and transfer en-
ergy to the CO

2
 molecule with great probability when colliding with the

N*
2
 molecule. Thus, though it is generally referred to as a ‘CO

2
 laser’, this

device nevertheless uses a gas mixture of CO
2
–N

2
–He, as a rule.

Continuous-wave molecular gas lasers operates under pressure of the
order of 1–10 Torr. The lifetime of the upper level ranges between 10–3

and 10–4 s and that of the lower level is 10–5 s. The Boltzmann distribution
among the rotational levels is established in the time of the order of  10–7–
10–8 s, which defines simultaneously the homogeneous line broadening of
the rotational-vibrational spectrum of the molecule (δν

0
 ≈ 10–3 cm–1). Since

the linewidth is less than the distance between lines (about 2 cm–1) or the
frequency range between longitudinal modes (usually ∆ν ≈ 10–2

cm–1), single-frequency operation is readily provided in the CO
2
 laser. The

rotational occupation has its maximum for the levels with the quantum
number J =20–30. Therefore, the laser action starts earlier for the rota-
tional–vibrational transitions between the levels of this order. The lines
belonging to the P branch (∆ J= –1) of the 0001–1000 transition have an
advantage. The operation at the 0001–0200 transition is suppressed since
the 0200 level is slightly below 1000 thus being more occupied. The dis-
crimination of the R branch (∆ J= 1) can be explained in a similar fashion.
Thus, the prevailing operating wavelength of the CO

2
 laser is 10.6 mm.

For tuning within this range or switching to 9.6 mm one should use a se-
lective resonator.

Class B lasers also include semiconductor lasers. The main feature of
this type of laser is that we deal with wide energy bands of the host crystal
instead of the narrow energy levels of impurity atoms. Nevertheless, it is
feasible to obtain the population inversion needed for the laser action. This
should be problematic inside the band since the intraband relaxation rate
is high enough and the interband transitions are generally involved. Hence,
the frequency range is governed by the gap energy.

The optical properties of semiconductors are defined by the mutual ar-
rangements and population of the two upper energy bands. The electrons
obey the Fermi–Dirac statistics according to which the probability that an
electron state with energy W  is occupied is given by the law

]/)exp[(1

1

BFvFc, TkWW
h

−+
=

If the sample is assumed to be in thermal equilibrium, then W
Fc

=W
Fv

=W
F

and there is a single Fermi level with the occupation probability 0.5 in-
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Fig. 1.5. Energy diagram and the position of the Fermi level (a) of the intrinsic
semiconductor; (b) of the crystal with p-n junction in the absence of bias; (c) under positive
bias. The electron levels in the hatched areas are occupied.

stead of two quasi-Fermi levels W
Fv 

and W
Fc

. This concept is valid because
the carrier thermalization time within a band is much shorter than the
interband relaxation time.

The population inversion condition in a semiconductor looks like W
Fc

–
W

Fv
>W

0
, where W

0
 is the band-gap energy. This means that the quasi-Fermi

levels are situated inside the bands and therefore the states near the bot-
tom of the conduction band are occupied, and those near the top of the
valence band are empty.

There are many ways to achieve the inversion in semiconductors: opti-
cal pumping, excitation by a fast electron beam, avalanche breakdown
caused by an external electric field and carrier injection through the p-n
junction. The last method has become most widespread due to its simplic-
ity end effectiveness.

In an intrinsic semiconductor, which is in thermal equilibrium, the Fermi
level is situated exactly in the middle of the band gap (Fig. 1.5a). If the
crystal is alloyed with a dopant (the n-type semiconductor), then the Fermi
level is nearer to the conduction band, and is inside this band in degener-
ate case. A similar shift, but towards the valence band, is obtained by an
acceptor admixture (the p-type semiconductor). We can dope differently
the different sites of one crystal and make a sharp boundary between the n-
type and p-type domains. The boundary layer is called the p–n junction.

The position of the Fermi level is the same in different parts of a
nonuniformly doped crystal if an external electric field is not applied. A
relevant energy diagram is given in Fig. 1.5b. Carrier migration through
the p–n junctions impeded by a potential barrier. A voltage applied to the
junction in a forward direction (from the electron to the hole part) lowers
the barrier (Fig. 1.5c) thus enabling the electron to penetrate into the p-
region and the holes in the n-region. Consequently, layers with increased
concentration of minority carriers are produced on both sides of the junc-
tion. The thickness of these active layers does not exceed a few microns.

a b c
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Carrier diffusion over great distances from the boundary is impossible
because of recombination processes.

In GaAs lasers, a major role is played by electron injected into the p-
region. The population inversion is produced near the boundary of the p–
n junction. The cavity mirrors are normal to the p–n junction plane. Usu-
ally, these mirrors are two opposite facets of the cleaved crystal. By virtue
of the high index of refraction of the semiconductor crystal, the Fresnel
reflection is tens of per cent, so that the Q-factor of the cavity is high
enough for lasing action even without additional reflecting coating. The
gain can reach extremely high values because of the high density of states
in the conduction and valence bands, which can be used to create a large
population inversion.

It is an important factor for the operation of diode lasers that the index
of refraction in the p–n junction is somewhat higher than in the reminder
of the crystal. Such an index variation promotes localization of the radia-
tion field near the p–n junction plane. This is the only place where ampli-
fication occurs, while outside the active region the absorption for the laser
wavelength is very high.

In a laser with a homostructure, as discussed above, all of its properties
are the same on the two sides of the p–n junction and, therefore, waveguide
features are minor. This and other drawbacks are not seen in lasers with
heterostructures. In this case, the layers adjoin the p–n junction, differ
from the active region in the composition (Ga

1–x
Al

x
As) and, consequently,

in the optical and electrical properties. Besides the fact that an index jump
at the boundaries of the active region contributes to field localization, the
potential barrier between the layers prevents injected carriers from escap-
ing from the active layer. Moreover, in heterostructures the losses are de-
creased outside the active layer, since the band gap in Ga

1–x
Al

x
As (adjoin-

ing layers) is wider than in GaAs (active layer).
The active layer of the laser diode confined to the both sides by layers

with different chemical composition constitutes a potential well. If the
width of the well is comparable with the DeBroglie wavelength for an
electron, then the distance between the energy (levels of space quantiza-
tion) exceeds the width of the levels that influence the optical properties
of the system and, consequently, the laser characteristics. The devices of
such type are called the quantum well lasers. What is the advantage of
these lasers in comparison with the ordinary laser diodes? One of them is
even not related to space quantization. The simple decreasing of the thick-
ness of the active layer leads to the proportional decreasing of the thresh-
old injection current, which corresponds to the transparency of a semicon-
ductor. The further lowering of required current accompanies the qualita-
tive changing of the distribution function of the energy states density, which
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becomes stepwise. Near the bottom of the potential well there are no lev-
els and this fact is delivering from the necessity of pumping in the conduc-
tion band of great number of electrons with the aim to reach of needed
localization of the quasi-Fermi levels.

A very important factor, which influences the threshold value and the
energy characteristics of a laser, is the cavity Q-factor. It is possible to
compensate the lowering of Q-factor due to decreasing of the cavity length
by increasing the mirror reflectivity. But this is difficult to achieve in the
framework of traditional design that assumes propagation of the emitted
radiation in the plane of the active layer with the output through the crys-
tal ends normal to this plane. The principal new result has been occurred
when the direction of generation was chosen perpendicular to the active
layer. This allowed decreasing noticeably the transverse dimensions of the
cavity and growing the multilayer dielectric mirrors using unified for all a
laser structure technology of epitaxial alternate deposition. The term
VECSEL’s is the abbreviature of Vertical Cavity Surface Emitting Lasers.
The pictorial view of the construction of the lasers of the latter type is
given in Fig. 1.6. A very important feature of such a laser is the absence of
the preferential direction of polarization.

A distinctive feature of semiconductor lasers is their very short cavity,
which does not exceed hundredths of a centimeter. That is why the
intermode beat frequency is very large: ∆ω ~ 1012 s–1. The short cavity
length together with the losses from transmission of the cleaved facets and
absorption yields κ ~1011 –1012 s–1. The rate at which the quasi-equilibrium
distribution of carrier inside the bands is established significantly exceeds
the intraband relaxation rate. The characteristic time of the first process is
of the order of 10–13 s. This is coherence time T

2 
in a semiconductor. The

intraband relaxation mechanism is the spontaneous electron–hole recom-

Fig. 1.6. Design of the Vertical
Cavity Surface Emitting Laser
(VECSEL) [44]. The small cavity
volume is combined with the high
mirror reflectivity, which leads to
very low laser threshold: 1–upper
contact;  2–area with irregular
structure; 3–Bragg reflector of p-
type; 4–silicon nitride; 5–multilayer
active area; 6–Bragg reflector of n-
type; 7–substrate from GaAs; 8–
lower contact; 9–output radiation.
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bination. The time constant for this process depends on the carrier density
but usually it is not less than 10–9 s and coincides with T

1
.

Organic dye lasers fall into class A. The characteristic band-like struc-
ture of the energy spectrum of organic molecules is shown in Fig. 1.7.
Owing to the even number of electrons, the ground state of the molecule is
a singlet (the spins are antiparallel in pairs). The lowest singlet state S

(0)

and the first excited singlet S
(1)

 play the primary roles in laser action. Mean-
while, triplet states, corresponding to the parallel spin orientation of opti-
cal electrons, are also important for the properties of the active medium.

The intercombination transitions between the levels of different multi-
plicity are spin-forbidden by the selection rules. Hence optical pumping
can transfer the molecule from S

(0)
 to S

(1)
. If these states are purely elec-

tronic, amplification in a system of organic molecules would be impos-
sible. Each electronic level, however, has a complex structure due to mo-
lecular vibrations and rotation. Thus, a version of a four-level scheme is
realized [45].

The distance between the vibrational sublevels range is several thou-
sands of inverse centimeters. The rotational structure has discrete steps of
the order of 10–100 cm–1. At a temperature 300 K only the ground sublevel
S

(00)
 is populated. When illuminated by pumping light, the molecules pass

to one of the vibrational sublevels S
(1v)

 of the first excited singlet state.
Then over a short time compared with the lifetime of state S

(1)
 the mol-

ecule enters the lover vibrational sublevel S
(10)

 through the radiationless
transition S

(1v)
→S

(10)
. The molecule stays here for 10–8–10–9 s and then re-

turns to the lower singlet either directly or through the triplet state. The
absorption line is formed by the transitions S

(00)
→S

(1v)
, and luminescence

line by the transitions S
(10)

→S
(0v)

. The latter are shifted towards the longer

Fig. 1.7. Energy-level diagram of an organic dye laser. Short lines show the rotational-
vibrational structure.
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wavelength with respect to the former, though they partly overlap.
The lifetime of the state S

(1)
 is short and, therefore, the population un-

der the action of optical pumping is relatively small. Nevertheless, the
population is greater than that of the excited vibrational sublevels of the
ground state. Thus, inversion, accompanied by gain, is produced in a num-
ber of electron–vibrational transitions.

Some of the molecules come, without emission, from the singlet state
S

(1)
 to the triplet state T

(1)
. The transition T

(1)
→S

(0)
 is forbidden so that the

state T
(1)

 is metastable. The existence of such a state prevents the laser
action. In particular, induced transitions T

(1)
→T

(2)
 produce an additional

absorption at the laser wavelength, (the so-called triplet absorption). The
rate of accumulation of molecules in the triplet state is defined by the
probability of intercombination transitions S

(1)
→T

(1)
 and has a range of

107–109 s–1. Due to this, in pumping by a giant pulse from a Q-switched
solid-state laser triplet absorption is not observed, while the use of a
flashlamp as a pumping source is possible only if there is an effective
depletion of the lower triplet levels, which can be achieved by the choice
of a special admixture in the dye solution.

If the triplet absorption problem is solved, primary attention should be
given to the losses by spatially nonuniform heating of the medium during
the pumping. The refractive index gradients arising in a cell with a dye
solution are sufficient to distort noticeably the cavity geometry and even
to make the cavity configuration unstable. This form of induced losses is
the main obstacle to the continuous wave mode of operation of dye lasers.
The CW lasing is achieved only in an active medium (such as a rhodamine
6G solution) having the form of a jet, with laser pumping (e.g. by the ra-
diation of an argon ion laser).

The band-like energy spectrum is a common feature of organic mol-
ecules and semiconductor crystals. The relaxation times for these two cases
are nearly the same: T

1
=10–8–10–9 s and T

2
=10–12–10–13 s. Nevertheless, the

cavities of these two types of laser have nothing in common. In liquid
lasers T

c 
~ 10–7 s, which ensures their belonging to class A.

The popularity of dye lasers is mainly due to the possibility of tuning
within the broad luminescence line. A small collection of dyes is suffi-
cient to cover the whole visible range. We can move to the IR, up to a
wavelength of 3.5 µm, using active media of another type – ion crystals
with intrinsic colour centres (F centres). The electron localized on an an-
ion vacancy in the crystal is the simplest example of an F centre. Owing to
its strong coupling with the crystal lattice, we should not consider the F
centre as an isolated formation of a hydrogen atom type. The electron en-
ergy levels assume, because of the immediate environment, a vibrational
band-like structure resembling the level structure of complex molecules.
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The relaxation times (10–12 s within one electron state and 10–8 s between
the different electron states) have the same order of magnitude as those in
dye solutions.

A spectroscopic situation like this occurs in some doped laser crystals,
including alexandrite (chromium chrizoberyllium) Cr3+:BeAl

2
O

4
 [46] and

Ti:Cr
2
O

3
 [47]. Here again the broad bands in the spectrum are caused by

the effect of the crystal lattice on the doped ions. Unlike the rare-earth
ions such as Nd3+, the ions of the ferric transition metals have unfilled
shells and are shielded by external electrons. The corresponding states are
subject to environmental perturbation and thus are sensitive to the lattice
vibrations. Consequently, the spectra show a vibrational structure that cor-
responds to transitions with simultaneous variations in the electron state
of the impurity ion and in the vibrational state of the crystal matrix. A
particular form of the spectrum depends on the host in which the ion is
embedded. The lifetime of the upper level in alexandrite is 1.5 µs. That is
why this laser falls into class B.

Class A includes most of atomic gas lasers. It was noted above that in
lines with a very high gain it is possible to provide the conditions typical
of class C lasers at the expense of the cavity Q-factor. Moreover, only a
few transitions like these are known so far.

The helium–neon laser is the most used atomic gas laser. Neon serves
as the lasing component of the mixture. The most intense CW generation
is achieved for 0.6328 µm, 1.1523 µm and 3.39 µm. The ground state of
neon atoms corresponds to the np6 configuration of the outer shell elec-
trons. Following Pashen’s notation, the excited state with the np5(n+1)s
configuration is denoted as 1s and its four sublevels are numbered in the
order of decreasing energy from 1s

2
 to 1s

5
.The next excited state np5(n+1)p,

denotes as 2p, consists of 10 sublevels from 2p
1
 to 2p

10
. The electron

s-configuration levels have a greater lifetime than those of the p-configu-
ration. Owing to this, as well as because of predominant population of the
2s and 3s levels of neon in collisions with metastable helium atoms, the
medium gain is ensured for the frequencies of the s→p transitions.

The spectral line broadening in gas lasers is due to spontaneous emis-
sion, collisions and the Doppler effect. Any of these mechanisms can make
the main contribution depending on the gas temperature and pressure, the
atom mass, the transition type and the wavelength. Under the conditions
typical of a helium–neon laser the neon line 3s

2
–2p

4
 (λ = 0.63 µm) has the

Doppler width 
 
δν

D
 = 1700 MHz and the line 3s

2
–3p

4
 (λ  = 3.39 µm) has the

Doppler width δν
D
 = 320 MHz. In the literature, the homogeneous contri-

bution to the linewidth 3s
2
–3p

4
 is described by an empirical formula [48]

/ 2 200 MHz 42 MHz/Torr (0.32 MHz/Pa)γ π⊥ = +
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which holds for the optimal relationship between the partial pressures of
helium and neon 5:1. For the transition 3s

2
–3p

4
 the analogous dependence

is [49]

/ 2 8.5 MHz 59.5 MHz/Torr (0.45 MHz/Pa)γ π⊥ = +

/ 2 9.75 MHz 14.9 MHz/Torr (0.11 MHz/Pa)γ π⊥ = +

1.2.3. Some Experimental Facts
There is extensive experimental material on laser dynamics. We choose
only the main facts without the knowledge of which it is difficult to dis-
cuss the theoretical problems. They refer to free running modes of opera-
tion.

Single-mode class A lasers show the simplest behaviour. The low iner-
tia (short relaxation times) of the active medium makes the transients ape-
riodic. The time of onset of a stable steady state depends on the cavity Q-
factor and the excess of the pumping above the laser threshold. In a he-
lium–neon laser this time ranges in 10–6–10–4 s [50–52]. To ensure that
only one longitudinal mode falls within the Doppler linewidth, the length
of the cavity should not exceed 10 cm for λ  = 3.39 µm. In longer cavities
single-mode operation requires the use of mode selectors. Single-mode
operation of dye-lasers, the gain lines of which are extremely broad, can
never been achieved without wavelength-selective elements.

The frequency dependence of the output power of a gas laser has a
characteristic feature: fine adjustment of the laser mode to the centre of
the gain line produces a local minimum in the power output [53]. This
feature, called the Lamb dip, is typical of active media with Doppler broad-
ening.

A frequency shift was discovered when the beat spectrum of lasers was
investigated [54]. Laser frequencies are shifted from the cavity
eigenfrequencies towards the line centre, and the beats between the longi-
tudinal modes are less than qc/2L (L is the length of the cavity and q is an
integer). When more than two longitudinal modes are excited, the beat
spectrum exhibits a fine structure indicating that the modes are not equally
spaced in the laser spectrum. The spectrum nonequidistancy is sensitive to
pumping power and cavity length.

In Ref. [55] it is found that the radiation process in the operation of the
helium-neon laser is regular so long as not more than three longitudinal
modes are involved. The degree of nonequidistancy a three-mode spec-
trum depends on the detuning of the strongest mode from the line centre.
The laser action with rigorously equidistant frequencies arises continu-
ously if the frequencies ω

c
 and ω

0
 converge with ω

c
 > ω

0 
and discontinu-

ously if these frequencies converge from ω
c
 < ω

0
.
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Chaotic modulation of the envelope of laser emission can appear when
a fourth mode is involved. The laser with λ = 0.63 µm, investigated in
[55], exhibited the three well-known scenarios of transitions from regular
to chaotic self-modulation of intensity as a control parameter was changed:
through a sequence of period doubling bifurcations (of the secondary beat
period in this particular case), through the appearance of incommensurate
frequencies (again in the secondary beat frequency) and through intermit-
tency [25,26].

In Refs. [56–58] one can find different statements concerning the
behaviour of multimode He-Ne lasers: three modes are enough for the re-
alization a chaotic regime. However, the talk is about the atomic transition
with a wavelength of 3.39 µm, which is distinguished by a much larger
gain. Under the experimental conditions realized in [56–58] the laser can
be attributed to class C rather than to class A.

Another type of phenomenon is demonstrated by dye lasers. Figure 1.8
shows the scheme of the laser used in Refs. [56–58]. The ring cavity of the
laser is supplemented with a retroreflecting mirror to ensure unidirectional
lasing. The active medium in the form of a jet of Rhodamine 6G solution
is pumped by an ion argon laser. The dispersive prism is intended for rough
tuning of the cavity. It is seen from Fig. 1.9 that immediately above the
threshold the laser emits in a narrow line. With an increase of the pumping
a bifurcation point is achieved where the spectrum splits into two lines the
distance between which is proportional to the square root of the dye laser
power. The cavity detuning makes it possible to observe bifurcations lead-
ing to increasing complexity of the line spectrum. The position of the bi-
furcation points is also dependent on whether a travelling wave or a stand-
ing wave is used in the laser.

In Refs. [59-61] the modal composition of a CW dye laser output was
not investigated. Meanwhile, the investigations concerned with the real
sensitivity of the intracavity laser spectroscopy method indicate that hun-
dreds of longitudinal modes participate when the laser with a nonselective
cavity is in a steady state. A high-resolution scan of the laser spectrum has

Fig. 1.8. Schematic diagram of CW  ring dye laser [60]. When the retroreflector mirror is
properly aligned the laser operate unidirectionally
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Fig. 1.9. Spectrum of the laser field
as a function of the pump power for
various cavity alignments [60]: (a)
bidirectional operation at the gain line
centre; (b) the laser is as in (a) except
the retroreflector is aligned to produce
unidirectional operation; (c) uni-
directional operation at the frequency
shifted by 20 A from the centre to the
red.

shown that nearly periodic chirping occurs in the case of travelling wave
[62]. The instantaneous width of the spectrum is small but the centre of
gravity of the mode packet drifts slowly towards the red (Fig. 1.10). The
drift ends in jump-like return of the spectrum to the initial position, fol-
lowed by a new cycle. The period of these spectral chirps is inversely
proportional to the laser power. In this experiment travelling wave opera-
tion was achieved by means of a Faraday cell.

It is possible to observe a regular self-sweeping of the spectrum in a
standing wave laser with a short concentric resonator if the dye jet is slightly
moved relative to the position of the beam waist [63]. It is shown also in
the work [63] that the period of the mode amplitude pulsations can be
noticeably increased at the expense of the cavity dispersion compensa-
tion. As a rule, in a standing wave jet laser is established the regime of
irregular mode amplitude self-modulation (Fig.1.11) with constant total
intensity of radiation [64, 65].

The different behaviour of the total intensity and spectral density of
dye laser emission is also exhibited in the stage of onset of a steady state
after pumping switching. The total intensity reaches the steady state very
quickly, over a time of order T

1
~10–8 s while the characteristic time of

spectral narrowing is 10–3 s or more [64]. Therefore, the dye lasers with
pulsed pumping operate under nonsteady-state conditions.

Periodic antiphase sells-modulation of the amplitudes of counter-run-
ning waves is possible in a ring dye laser with two retroreflecting mirrors
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Fig. 1.10. Quasiregular self-sweeping of the spectrum of a unidirectional ring dye laser
[62]: A = 1.9 (a); 1.3 (b); 1.15 (c).

Fig. 1.11. Irregular kinetics of the dye laser spectrum [64, 65]: A = 1.30 (a); 1.13 (b); 1.02
(c).
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[66]. Both periodic and chaotic self-modulation was observed in the he-
lium-neon laser under similar conditions [67, 68].

Class B lasers exhibit diverse forms of behaviour. A characteristic fea-
ture is the phenomenon of ‘spike generation’, in which the laser emits a
sequence of isolated bursts. This phenomenon was first discovered in the
experiments with paramagnetic masers [69, 70] but thorough investiga-
tion of it came with the advent of solid-state lasers.

Solid-state lasers operate differently depending on the spectroscopic
properties of the laser medium, the cavity type and the pumping param-
eter. These lasers are subject to mechanical vibrations and the temperature
variation of the laser element. The basic elements of the design of lasers
belong to first generation are a module containing a laser rod and pumping
lamps, and a laser cavity is formed by mirrors mounted outside the mod-
ule. A cooling system for the active element and pumping lamps are nec-
essary in high power systems.

Free-running oscillation process of solid-state lasers depends on the
spectroscopic properties of the active medium, on the cavity type and the
pumping. A great influence can be provided by mechanical vibration and
by temperature variation of the laser elements. The basic element of a first
generation laser is a lighter with the laser rod and the flash lamps inside it.
Sometimes this laser head block is called the quantron. The laser cavity
more often is formed by mirrors mounted outside the quantron. The forced
cooling system for the laser rod and the flash lamps is used when it is
necessary.

The emission from a ruby laser with flash lamps pumping at the room
temperature in a cavity formed by parallel plane mirrors is a series of spikes.
No regular features are observed in the variation of either the amplitude of
the spikes or the interval between them, nor is there a tendency for the
pulsation damping. The laser start-up is delayed from the time of the pump
switch-on by a fraction of a millisecond necessary to reach the threshold
inversion. The average duration of the spike is about 5·10–7 s while the
peak power of the laser emission can reach 10–3–10–4 W.

If the excess pumping over the laser threshold is small, then only a
small part of the crystal, where the maximum inversion accumulates through
focusing of the pump radiation, is involved in the laser action [71]. The
emitting spot slightly enlarges with an increase in pumping energy. The
radiation density is distributed nonuniformly within this domain. When
film is exposed to the emission for a long time, simple structures, identi-
fied with the optical cavity modes, are recorded only if the excess over
laser threshold is not great [72]. However, the dynamical behaviour can be
more adequately recorded by the methods enabling one to follow the evo-
lution of the optical pattern with time.
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Processes, which last not more than 10–7 s, can be investigated by a
streak camera, which uses the principle of mechanical scanning of the image
along a fixed piece of film [73]. The shutter of the camera is opened when
required or remains open as long as the exposure. A near field chronogram
of a laser beam, recorded in this way, is shown in Fig. 1.12. Only a vertical
strip of the output beam, limited by the entrance slit of the streak camera,
is shown. The discrete pattern in the horizontal direction indicates that
spikes are generated while that in the vertical direction indicates that indi-
vidual transverse modes are excited. The structure varies from spike to
spike meaning that a change of transverse mode occurs. The fact that there
is a high probability of exciting only one transverse mode in a separate
spike was mentioned by many authors [73–78]. Investigating the nature of
the high angular divergence of the laser emission and of small diameter of
the transverse modes the authors of Ref. [78] inferred that these features
correspond to a spherical rather than a plane-parallel cavity. Optical inho-
mogeneities due to crystal imperfections, which arise when the crystal is
heated inhomogeneneously by the pumping light, have the properties of a
lens. With a lens between the plain mirrors, the cavity is equivalent to a
spherical one. The sphericity is inconsequential only for very large focal
lengths (F > 105 cm). The required high optical quality of the laser rod is
seldom reached to avoid this effect, so that the term ‘plane-parallel reso-
nator’ has a purely nominal meaning when applied to solid-state lasers.
When the lensing property of the laser rod is compensated, the mode di-
mension approximates the crystal diameter and the beam divergence de-
creases to the diffraction limit [79].

Investigation of the spatial structure of the emission of a ruby laser
with a plane-parallel cavity confirms that the transverse mode pattern is
unstable; study of the optical spectrum offers a similar conclusion con-
cerning the longitudinal modes. The total width of the spectrum is as large
as a few tenths of an angstrom so that high-resolution Fabry–Perot inter-
ferometers can be used to observe its structure. The light transmitted through
the interferometer forms a ring interference pattern in the far field zone (in
the focal plane of a lens). The number of rings within free spectral range
coincides with the number of longitudinal modes involved in the laser ac-

Fig. 1.12. The beam profile in the near-field zone of a ruby laser with plane-parallel cavity.
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tion. Generally, tens of longitudinal modes are excited during each flash.
Selection of the longitudinal modes is evident in all cases where the

cavity has a few parallel reflecting surfaces moderately inclined to the
mirrors. The ends of the laser rod, the surfaces of the mirror substrates are
examples of such surfaces. The parasitic selection is absent when the cav-
ity mirrors are fixed directly to the ends of the active element. To avoid
parasitic selection in the case of external mirrors the ends of the laser rod
are cut at Brewster’s angle and the mirrors are deposited on wedged sub-
strates. The laser mode spectrum is also sensitive to the position of the
active element and to the pumping distribution over its length [80].

A chronogram of the interferogram also can be obtained using a streak
camera [73, 81–84]. Specifically, only a narrow band of the ring pattern of
the interferogram (within the entrance slit of the camera) is recorded. The
analysis of spectrochronograms like those in Fig. 1.13 has shown that the
spectrum of an individual spike is formed by fewer modes than observed
overall during the flash, but the collection of modes changes from spike to
spike.

Variations in the pumping power do not influence the process and change
only the peak power and the number of spikes in a flash. Lengthening the
cavity has greater impact. When the cavity length exceeds 10 m the spik-
ing become ordered [85] and remains regular up to the maximum achieved
length of 400 m [86]. Such a base can be obtained when the delay optical
line is inside the cavity. The spike duration increases with the cavity length.
When the latter is extremely large only a single spike can be emitted; its
envelope displays modulation with the intermode beat frequency.

Ruby lasers are very sensitive to cavity misalignment. An increase in
the angle between the mirrors raises the laser threshold [87, 88], increases
the time interval between spikes and increases their amplitudes [89–91].
The process seems to be more orderly than the spike generation in a plane-
parallel cavity.

Fig. 1.13. Spectrochronogram of a ruby laser with a plane-parallel cavity.
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An orderly laser action can be achieved in a ruby laser with a spherical
cavity. Regular damped pulsations, which lead to eventual constant power
output, are observed in confocal, concentric and similar cavities [83, 92–
96]. The damping rate of regular pulsations is sensitive to the pumping
power [85, 97] and the cavity geometry [95, 98]. Being maximal with con-
centric arrangement of the mirrors, the damping rate reduces as the ratio
of the cavity length to the curvature of the mirrors is reduced. The absence
of a visible transverse beam structure in the near field zone indicates that
a large number of transverse modes are excited. The spectral width is re-
duced from a fraction of Angstrom in the first spike to a small value re-
tained thereafter, but the centre of gravity of this narrowed spectrum is
continuously shifted. Although the overall output power is constant, the
laser action is not rigorously a time-independent process since each indi-
vidual mode amplitude is subject to chaotic modulation variations [96],
resembling the dynamic behaviour of dye laser.

In many experiments it is found that undamped regular pulsations can
occur [85, 97, 99–104]. They feature a wide (tenth of an Angstrom) opti-
cal spectrum, which does not change during lasing. Any interruption of
the pulsation regularity is accompanied by a narrowing of the spectrum
[105]. The regular pulsations correspond to a homogeneous distribution of
intensity over the beam cross-section, which is reproduced from spike to
spike [93, 97, 102, 105].

The correlation between the regularity of pulsations and the number of
lasing modes is not casual. This is proved by the experiments with mode
selecting elements inside the cavity. A decrease of the number of excited
modes breaks unambiguously the regular process regardless of whether
transverse [106] or [107] longitudinal modes are selected. However, if the
mode discrimination is very strong, then the laser dynamics becomes or-
dered again as in a single-mode laser, see for example [108, 109].

The laser action is rather regular when parasitic selection of longitudi-
nal modes is avoided and a single transverse mode is present [97, 102,
105].

The wide range of possible behaviours of a ruby laser is apparent when
one uses a concentric cavity misaligned by a few angular minutes [110,
111]. The lasing may have the form of spikes that follow in regular time
intervals. The beam structure in the near-zone indicates that a few high-
order transverse modes are excited. The emission frequency is fairly stable
and the spectrum is narrow.

The laser emission process bears an imprint of many physical factors.
The crudest of these factors are technical fluctuations of the parameters.
In flash-lamp pulsed lasers mechanical vibrations of the rod are caused by
switching the lamps. Vibrations of other cavity elements can be produced
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by external sources. The way the coolant passes over the laser rod is also
important. The effects of bending vibrations of the rod in the form of am-
plitude modulation with a frequency about 10 kHz can be significantly
reduced by careful choose of the size and position of the diaphragms on
both sides of the active element [112, 114, 115]. This is also used to avoid
the effect of variation of thermal lens in the rod. Vibrations of the mirrors
and other elements can be reduced through mechanical decoupling and
increased rigidity of the joints. An important role is played by careful align-
ment of the mirrors and elimination of the intracavity reflecting surfaces
parallel to them. Therefore the ends of the laser rod are oriented at
Brewster’s angle, or they are antireflecting coated for a small angle of
incidence.

The result obtained after taking these measures of passive stabilization
of laser is apparent in Fig. 1.14. The spiking is retained but the degree of
order is noticeable increased. Although the emission spectrum is initially
broad, it is soon contracted so that thereafter one longitudinal mode is
involved in each spike. The change of modes from spike to spike corre-
sponds to the change of laser frequency by discrete steps depending on the
cavity filling factor and the position of the laser rod [112, 113]. The self-
frequency tuning rate can exceed several times the thermal drift of the
ruby gain line.

The laser operation is also influenced by the spatial modulation of the
inversion caused by the laser field. This produces a stronger difference in
gain of the modes and therefore a higher discrimination among some of
them. For longitudinal modes this factor is absent in travelling-wave la-
sers. However, if the modes are standing waves then their equal rights can
be ensured only by continuously changing the localization of nodes and
antinodes.

Fig. 1.14. Temporal characteristics of a ruby laser operated at the fundamental (TEM
ooq

)
mode of a plane-parallel cavity under the conditions of passive stabilization of the device
[114]: (a) oscillogram; (b) chronogram of the far-field zone of the laser; (c, d) spectrum
chronograms without and with longitudinal mode selection.
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One way to smooth the induced spatial inhomogeneities of inversion is
to provide movement of the laser rod. Experiments with a ‘running me-
dium’ [116–123] showed that the spike-free operation of a ruby laser is
possible when the ruby rod moves with a velocity exceeding 20 cm/s.
Single-frequency emission is ensured when the velocity is greater than 50
cm/s. A side effect of the moving medium is a ‘kinematic modulation’
with a frequency proportional to the velocity of the rod. The point is that
the end of the rod parallel to the mirrors occupies equivalent positions at
intervals equal to λ/2 as it moves along the cavity axis. The Q-factor of a
composite cavity oscillates with the Doppler frequency 2ωU/c. This is ex-
hibited as an amplitude modulation of the radiation in the spike-free mode
of operation.

The standing wave pattern also can be moved along the active medium
by displacement of one of the cavity mirrors [124, 125], but again there is
a side effect: a scanning of the cavity eigenfrequencies. However, the com-
pensated phase modulation is free of such drawbacks [114, 126–134]. The
optical length of the gap between the active element and the mirror is con-
trolled with an electrooptical phase modulator. When identical KDP or
DKDP modulators are located on each side of the rod and control voltages
are antiphased. Unlike the ‘running medium’ method, this procedure re-
quires Brewster’s angles on all interfaces inside the cavity.

Using the methods of smoothing of the longitudinal inhomogeneitiy
together with passive methods of cavity stabilization, a ruby laser can be
switched to damped regular pulsations (Fig. 1.15). During the transient
process the spectrum is reduced to one longitudinal mode, then the modes
alternate with the thermal drift velocity without any pulsations.

The same methods of laser stabilization were applied to Nd:YAG lasers
[114, 135, 136] but the result was slightly different. To obtain spike-free
lasing it is sufficient to take steps to avoid the mechanical and the thermal
instabilities. Steady-state multimode operation is established after the usual
transients (Fig. 1.15). Smoothing of the spatial inhomogeneity of the in-
version does not produce any radical changes.

Passive methods of protection against technical fluctuations are suffi-
cient to cancel the intensity pulsations in neodymium glass lasers as well
(Fig. 1.16). However, the glass laser spectrum has a different structure
compared with lasers that use crystals. This is explained by the inhomoge-
neous broadening of the spectral lines of impurity ions in glass. A charac-
teristic feature of the evolution of the spectrum of laser operation with
Nd:glass is that it splits into discrete bands. An increase of the number of
these bands is accompanied by the growth of the pumping power. This was
first noted in Refs. [138, 139]. A similar behaviour in dye lasers has been
mentioned above.
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We should mention one more feature of the dynamic behaviour of a
silicon neodymium glass laser, namely the dependence on the spectrum of
the pumping light [140–144]. The process shown in Fig. 1.17 occurs when
the pumping spectrum components are cut off by short-wavelength light
filters (λ < 420 nm). Such filtering prevents the formation of some colour
centres in the glass which play the role of saturable absorber. If the whole
spectrum of a xenon flash lamp, including the ultraviolet wing penetrates
the active element, then the lasing takes a form of undamped oscillations
(Fig. 1.17).

Spike emission is also characteristic of semiconductor lasers to the same
extent as it is of the solid-state lasers mentioned above. The fact that such
spikes were discovered several years after the advent of diode lasers [145]
can be explained by the higher frequency of pulsations. The main features
of the spiking of GaAs homo-structured lasers were found in Refs. [145-

Fig. 1.15. Same as Fig. 1.14 but with the compensated phase modulator switched on.

Fig. 1.16. Temporal characteristics of silicate neodymium glass laser with a plane-parallel
cavity (TEM

ooq
 mode) under the conditions of cut-off of the short-wave component of

pumping light:  (a)  oscil logram; (b )  chronogram of the far-field zone; (c)
spectrochronogram.
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152].1 Amplitude oscillations were discovered under both pulsed and con-
tinuous pumping. The modulation depth and frequency, and the orderli-
ness of the pulsations depend on the diode temperature and the excess of
the injection current over threshold pump level. Near the lasing threshold
the modulation is shallow or absent. The most regular pulsations appear
for a 1.1 to 1.4-fold excess over the threshold [148]. Increase in the injec-
tion current leads to a sacrifice of regularity.

The degree of the orderliness of the pulsations correlates with the field
structure in the near-field zone. Because of crystal inhomogeneities the
light in the active region of an injection laser can break up into filaments.
The intensity pulsations of individual filaments, which act as independent
laser, are not synchronized [145]. The experimental data concerning the
relation between the form of the optical spectrum and the dynamic mode
of operation, proposed by different groups of researchers, are in strong
disagreement. This is an indication that different pulsation mechanisms
exist.

Undamped pulsations are also observed in hetero-structure lasers [147].
For these lasers the injection current must exceed the threshold value by a
factor of 1.5–2.0. Damped pulsations are observed for lower pumping lev-
els. The period decreases as the injection current density and temperature

Fig. 1.17. Dependence of the dynamics of silicate neodymium glass laser with a spherical
mirror cavity on the spectral composition of pumping. The optical density of the filter that
absorbs the short-wave part of the pumping spectrum increases from (a) to (c) [137].

1A much more detailed list of references is given in [152, 153].
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are increased, and the period growth as the cavity length increases. Typi-
cal spike durations are (1–5)×10–10 s. The ratio of the duration of indi-
vidual spike to the spike repetition period is 0.2–0.4 [148].

Carbon dioxide lasers, which also belong to class B, do not show the
same tendency towards spontaneous spiking. Observation of instability in
a standing wave laser was reported only in [155, 156].

Other specific features are observed in the behaviour of class B lasers
with ring cavities. Time-dependent processes of two types can be observed
in a CW Nd:YAG ring laser provided spikes are avoided. The process of a
first kind is the antiphase harmonic self-modulation of counter-running
waves, whose frequency is close to the relaxation oscillations frequency
[157–161]. A slower process of the second kind (Fig. 1.18) is a repetitive
reversal of the laser direction [157, 158, 161]. Switching from one mode
of operation to another can be achieved by cavity realignment. Both of
these self-modulation processes occur for a single-frequency laser spec-
trum. If several frequencies occur in the spectrum, then the spike genera-
tion tends to be there.

The self-modulation regime of the second kind was also recorded in
experiments with a CO

2
 laser [162, 163]. This process could be obtained

by detuning the cavity eigenfrequency from the gain line centre. Mean-
while, depending on the gas pressure, the discharge current and the
detuning, other time-dependent processes can be observed in a CO

2
 laser

including synchronous intensity pulsations of both waves, having the form
of short pulses.

The solid-state lasers of new generation differ from their predecessors
mainly by the pumping scheme. The laser light sources are used for this
purpose: semiconductor [164] or sometimes ion gas lasers [165] rather
then flash lamps. A scheme of a solid-state laser with longitudinal pump-

Fig. 1.18. Intensity oscillogram of one of the waves generated by an Nd:YAG ring laser in
the self-modulation regime of the second kind.
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ing by means of a diode laser is presented in Fig. 1.19. The advantage of
laser pumping is a narrow spectrum, which can be fit to the absorption line
of the active medium. Due to this high efficiency of the pumping and weak
heating of the active element are achieved. One more feature of the mod-
ern solid-state lasers is monoblock construction of the laser with mirrors
at the ends of the active rod. The miniaturization of the laser results in a
small number of lasing modes that is very convenient for dynamic investi-
gation. Also the choice of the laser crystals is now much wider.

Diode pumping provides a much more stable laser operation than the
flash-lamp pumping even without application of special measures. The
CW spikeless oscillation is characterized by the level of fluctuations close
to its natural limit. The dynamic features are exhibited as the resonance
peaks in the power spectrum (spectrum of intensity fluctuations). The spec-
tra of fluctuations of both the total intensity and individual modes of a
laser with a very short cavity are shown in Fig. 1.20. The spectrum of laser
oscillations consists of three longitudinal modes. There are three resonance
peaks in the power spectra of the individual modes, while only one peak
on the highest resonance frequency is seen in total intensity spectra. These
experimental data have been confirmed in other works [166, 167]. They
testify to existence of relaxation oscillations, the number of which is equal
to the number of excited cavity modes, at least, if the number of the modes
is not too large. All the relaxation oscillations except the high-frequency
one belong to antiphase dynamics. That is why they do not exhibit them-
selves in the total intensity. Various types of relaxation oscillations can be
seen also in a direct experiment by monitoring of the intensity of genera-
tion.

From the point of view of the spectrum, the fibre lasers are antipodes to
the miniature solid-state lasers. The large cavity length and broad inhomo-
geneous gain lines promote the oscillation of a very large number of longi-
tudinal modes. However, the most striking features of the fibre lasers are
connected with the random orientation of the active centres in the fibre
host and with always present birefringence. These features are exhibited
in polarization laser dynamics. By separating at the laser output a compo-

Fig. 1.19. Scheme of a Nd:YAG laser pumped by a semiconductor diode laser along the
Fabri–Perot cavity axis [164]: 1–laser diode; 2–matched optics; 3–pumping beam; 4–mirror;
5–laser rod; 6–mirror; 7–output radiation.
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Fig. 1.20. Power spectra of total intensity (a) and of individual modes in the order of
decreasing intensity (b,c,d) of LNP laser pumped by an argon ion laser [165].
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nent with one of eigenpolarizations and analyzing its power spectrum, it is
easy to see two resonance peaks while in the total intensity there is only
one peak. The situation is similar to that in a two-mode laser. So, we can
speak about the ‘polarization modes’ in spite of the fact that each field
component with a fixed polarization contains a lot of longitudinal modes
[168–170]. The dynamical effects of switching of the polarization states
have been observed in semiconductor lasers, in particular, in VECSEL’s
[171, 172].

Comparing the experimental results for the lasers with the ring and two-
mirror cavities, it is possible to note a sufficient feature: the number of
resonance peaks in the power spectra of the latter does not exceed, with
rare exception, the number of lasing modes, whereas in ring lasers we have
three different types of relaxation oscillations though the number of lasing
modes is only two [173, 174]. In lasers with the Fabry–Perot cavities such
situation is possible only when there are modes with close enough
eigenfrequencies, for example, in fibre lasers with a weak birefringence
[169, 170].

Turning to class C lasers we should note that a ring version they admit
of the same types of competition between counter-running waves as class
B lasers. This was demonstrated using, as an example, a 15NH

3
 laser with a

CO
2
 laser as the pumping source [175]. Besides the amplitude measure-

ments, the phase measurements are also presented in [175]. The result re-
lated to self-modulation of the second kind is given in Fig. 1.21. The change
in slope of the phase indicates that the laser frequency is switched be-
tween three discrete values as the mode intensity rises, falls and is kept at
its maximum, respectively.

The experimental setup is shown in Fig. 1.22. The ring cavity is formed
by three reflectors of different types. A concave opaque mirror M

3
 is

mounted on a piezoceramic to control the cavity perimeter within a small

Fig. 1.21. Time dependence of the intensity and
phase of one of the waves of a ring ammonia
laser (λ= 153 µm) in the second-order self-
modulation regime. The phase scale reads to
π. The frequency shift in the areas of intensity
rise and fall with respect to frequency at the
maximum is +28 and –38 kHz, respectively
[175].
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range. The pump radiation is introduced into the resonator by the first
order diffraction of a 10 µm grating, which simultaneously plays the role
of the ring cavity mirror M

2
. The far-infrared laser radiation outcoupling

is by means of a partially transmitting gold mesh M
1
. Recording of laser

radiation generated both in the pumping wave and opposite direction is
provided. The cavity is placed into a vacuum chamber, in which a required
ammonia pressure is maintained.

The feature of basic importance is the heterodyne detection of the laser
field carried out by mixing with the high frequency harmonics of a klystron.
This method gives information on the field amplitude and phase dynamics
while homodyne detection is informative only of laser intensity.

Unlike the other types of lasers, class C lasers are able to demonstrate
instabilities due to the coherent interaction of the laser field with the atomic
system, not associated with mode coupling. Ideally, the model of a single-
mode, homogeneously broadened, travelling-wave laser, as Haken showed
[176], is isomorphic to the famous Lorenz model [177], which initiated
the study of deterministic chaos in the nonlinear dynamics of dissipative
systems. The tenacious attempts to reach this ideal have been crowned by
the experiments with far infrared ammonia lasers pumped by shorter-wave-
length molecular gas lasers [23, 37–39, 178–186]. The unique feature of
this type of lasers is that a large excess over the laser threshold can be
achieved when the gain linewidth is less than the cavity passband. The

Fig. 1.22. Experimental setup showing an ammonia ring laser [175]: M–mirror; Gr–grating;
P–aperture of CO

2
 spatial filter; BS–pumping CO

2
 beam stop; L–lens; D–diaphragm; SD–

Schottky barrier diode detector; K–klystron.
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spectral homogeneity of the gain line is ensured by selective excitation of
the gas molecules in the field of a monochromatic travelling pumping wave
[187]. If the frequency of the pump does not coincide with the absorption
line centre, then the laser medium can interact only with one of the two
counter-running waves.1

Since probability of spontaneous emission is small for submillimetre
wavelength, the main contribution to the homogeneous linewidth is the
gas pressure. There is a pressure range of composite (10–1–10–2 Torr), where
the linewidth (105–106 Hz) is combined with the possibility of obtaining a
high gain.

Besides the fact that they proved the existence of a dynamic instability
threshold, the experiments with an 15NH

3
 laser showed that (a) this thresh-

old is high enough, (b) finite-amplitude regular pulsations are established
once this threshold is exceeded, (c) chaotic behaviour is achieved through
a series of period-doubling bifurcations with an increase in pumping in-
tensity, (d) the spectrum recorded by heterodyne detection of the laser field
may or may not have a carrier frequency depending of combination of
parameters (gas pressure, pumping power and pumping frequency), i.e.
amplitude modulation or beats can occur.

A slightly different behaviour is exhibited by an 14NH
3
 operated at λ  =

81.5 µm and pumped by an N
2
O laser. When the cavity is tuned exactly to

the gain line centre and the pumping exceeds the instability threshold, the
laser exhibits chaotic pulsations, which are typical for the Lorenz system.
When the detuning between the cavity mode and the gain line is large
enough the pulsations are regular. The route to chaos as the cavity tunes
towards the line centre depends on the gas pressure. There is period dou-
bling (Fig. 1.23) in the domain of 5.5–9 Pa [182, 183, 186], while one can
observe intermittency if the pressure is lesser [184, 185].

Discussion of the experiments with ammonia FIR lasers will be contin-
ued in Section 3.5.4.

The instability of a steady-state operation was observed in other gas
molecule FIR lasers with optical pumping such as a CH

2
F

3
 laser withλ =

117 µm [35], a CH
3
F laser with λ  = 496 µm [188], and a HCOOH laser

with λ = 742 µm [189]. The self-modulation regimes, including the cha-
otic ones, were obtained also in a pulsed ammonia (λ = 12 µm) laser pumped
by a TEA CO

2
 laser [181, 190–193]. Unlike the CW FIR lasers, in this

case the pressure in the ammonia cell was kept at a higher level of 1 to 10
Torr.

Inhomogeneous line broadening lowers the instability threshold [194],
making it easier to achieve undamped pulsations in a free-running laser.

1Therefore, it does not matter what cavity, either ring or Fabry-Perot, is used.
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Fig. 1.23. Transition to chaos through
period doubling with decreased detuning
of an NH

3
 laser operated at a wavelength

of 81.5 µm. The detuning diminished from
(a) to (f) [178].

Fig. 1.24. Laser power output vs (a) relative excitation for laser tuning near the peak
power output and (b) cavity detuning for gas fillings at 70 mTorr of xenon and 380 mTorr
of helium [32]. Qualitatively different regions of constant intensity output (CW), of periodic
pulsations with fundamental (T) and double (2T) periods, of quasiperiodic (2F) and chaotic
(C) pulsations are shown.

This was first found in the operation at a xenon laser at a wavelength 3.51
µm [1,195,196]. Meanwhile, more freedom is given to experimental deal-
ing with a helium–xenon laser due to the possibility of controlling the
relationship between the homogeneous and inhomogeneous broadening of
Xe, as mentioned above. On the transition in a He-Xe laser the instability
and other bifurcations were established in Refs. [197, 198]. The dynamic
instability threshold was reached also at λ  = 3.39 µm in a He–Ne laser
[31].

Some regular features were revealed by investigation of a ring He–Xe
laser, in which the travelling-wave regime is ensured using a Faraday iso-
lator [32, 199]. The results of the experiment are given in Fig. 1.24. Our
attention is engaged by the low instability threshold and the similar
behaviour of the laser when the pumping is changed and when the cavity is
tuned. On the route to chaos, a subharmonic component, indicative of the
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period doubling, first appears in the spectrum and then a component with
incommensurate frequency is involved. In [32] it is also found that an in-
crease of the partial helium pressure and, therefore, of the homogeneous
broadening of the gain line in the mixture leads to an increase of all bifur-
cation points of the discharge current as a control parameter. Using optical
heterodyning it has been found that pulsations are possible both when the
field spectrum has a pronounced central component and when the side
components dominate.

Experimentalists have paid much attention to the investigation of the
dynamic behaviour of standing-wave He–Xe lasers [197, 198, 200–202].
The bifurcation pattern in this case shows increased complexity, especially
near the Doppler line centre where the holes, burned out by counter-run-
ning waves, overlap. The main tendencies revealed in these experiments
can be formulated as follows:

–the steady-state instability threshold is lowered as the degree of inho-
mogeneous broadening increases;

–two types of time-dependent processes are observed; there are either
smooth pulses or repeated damped pulse trains;

–the diverse scenarios of transition to chaos are possible; the transition
from one regular regime to another through an intermediate strip of
chaos is natural.

All these experimental facts concern only the free running lasers. They
give an outline of each dynamic class. Missing details will be added as
required. Knowledge of the general pattern of behaviour shows which meth-
ods of controlling the laser behaviour are reasonable in each particular
case and help prediction of the results. Through this discussion we have
indicated theoretical approaches to laser description that are needed for
different phenomena.
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Chapter 2

Basic Equations for the
Dynamical Behaviour of Lasers
A self-consistent set of laser equations includes equations for the electro-
magnetic field and the equations describing the state of the medium, which
interacts with this field. The complete set is often called the Maxwell-
Bloch equations. Roughly the same form, now used in laser dynamics, of
this semiclassical set was first written in 1957 by Fain [203] and in 1959
by Oraevsky [204]. In their most general form, these equations are too
complicated for all but numerical simulations so that in particular situa-
tions one has to use radical simplifications.

There are many versions of the laser equations and some of them will
appear in the next chapters. This chapter must give an idea of the main
principles of simplifications of the Maxwell–Bloch equations, which make
it possible to obtain the dynamical models of specific lasers.

2.1. Equations for the Electromagnetic Field

It is well known that a classical description of the electromagnetic field is
fully justified for the dynamics of most phenomena in macroscopic lasers.
Therefore, we will use Maxwell’s equations as a basis:
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The material equations will be written now in the usual form:

       PEDMHBEj ππσ 4)c(,4)b(,)a( +=+== .              (2.2)

Conductivity σ is indicative of the bulk losses in the medium. Magnetiza-
tion M and polarization P both split, in general, into two parts. The first
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part accounts for the nonresonant contribution of all the molecules (at-
oms) of the medium (the host) and can be presented as

         HMEP
π

µ
π

ε
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4
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11

−=−= . (2.3)

In what follows we will consider only nonmagnetic materials for which
µ  = 1. Generally speaking, the dielectric constant of the medium can de-
pend on the total intensity but the nonlinearity will not be taken into ac-
count for a while. The second part, at least for the polarization component,
is solely due to the resonant interaction of the field with the active me-
dium. This term is of great interest and the governing equations for it will
be discussed below in Section 2.2.

2.1.1. Wave Equation
Consider the electromagnetic field in a weakly absorbing dielectric with
active impurity atoms, which have transitions between the energy levels,
which are assumed to be allowed under electric dipole approximation.

Differentiating Eq. (2.1b) with respect to time, we substitute the values
∂∂∂∂∂H/∂∂∂∂∂t from Eq. (2.1a) and j from Eq. (2.2a). Bearing in mind that B=H,
we arrive at
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Using Eq. (2.2c) we can write electric induction D as
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and transform Eq. (2.4) to
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If the medium is spatially homogeneous, then ∇(∇ ·E) by virtue of Eq.
(2.1c). Saturation effects slightly complicate the matter since the field in-
homogeneities lead to an inhomogeinity of the medium. However, quan-
tum electronics operates with wave beams of the form

)](exp[),(),( 0 kztitt −−= ωrErE ,

(2.6)

)](exp[),(),( 0 kztitt −−= ωrPrP .

The complex amplitude is a slowly varying function of space coordinates
and time, so that Eqs. (2.6) describe a monochromatic wave beam of lim-
ited, although large compared to the wavelength, cross-section, which
propagates along the z-axis. Saying ‘slowly varying’, we mean that the
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scale of time for variation in phase and amplitude greatly exceeds the os-
cillation period and the characteristic scale of the spatial structure of the
beam is much larger than the wavelength. This last fact and the fact that
the wave is transverse suggest an inequality

EE 2)( ∇<<⋅∇∇ .

The possibility of neglecting the term ∇ (∇ ·E) in the wave equation,
describing the propagation of a wave beam in a weakly nonlinear medium,
was shown in [205, 206]. The slow variations of the wave amplitude and
phase lead to the inequalities
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which make it possible to discard, by differentiation, a few terms:

)](exp[2 0
0

2
0

2 kzti
z

ikk −−






∂
∂+−∇≈∇ ⊥ ωE

EEE 2
,

)](exp[0 kztii
t

−−−≈
∂
∂ ωωE
E

,

(2.7)

)](exp[2 0
0

2
2

2

kzti
t

i
t

−−






∂
∂+−≈

∂
∂ ωωω E

E
E

,

)](exp[0
2

2

2

kzti
t

−−−≈
∂
∂ ωω P

P
.

Inserting Eqs. (2.7) into the wave equation (2.5), we arrive at a parabolic
equation
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The latter assumes its simplest form when the field and the medium can be
considered homogeneous in a plane perpendicular to the wave propaga-
tion direction and when the dispersion law ω = c′k is valid:
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Here c′ is the velocity of light in the medium.
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The fact that ε is different from unity is disregarded quite often in the
laser theory. From Eq. (2.9) it is seen that a transition from the case of an
atomic system in vacuum (ε =1) to the case ε ≠ 1 is possible through the
substitutions:

c  → c′,  σ → σ/ε, P
0
  → P

0
/ε                       (2.10)

Also, the wave equation retains its form if the active molecules have a
relevant magnetic dipole transition. In Eq. (2.5) one should substitute E
by H and P by M and remember that magnetization is independent of ε.

2.1.2. Modal Decomposition
The field expansion in eigenfunctions (modes) of the laser cavity (see, for
example, [207, 208]) aims at reducing Eqs. (2.1) to a set of ordinary dif-
ferential equations. Rigorously speaking, the degree of the resultant equa-
tions is infinite. Almost always, however, it is possible to restrict oneself
to a finite number of equations since there are a finite number of excited
modes.

If the eigenfrequencies and eigenfunctions of the cavity are known, the
problem is easy in principle. However, the eigenvalues problem is usually
solved not for a real but for a similar ideal cavity. For a closed cavity the
approximation means that the losses are fully neglected. Actually, the real
boundary conditions on the metallized (S

1
) and the open (S

2
) areas of the

surface are replaced by the ideal ones:
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Here n is a unit vector normal to the surface. The conductance of the me-
dium in the cavity is represented as a superposition of the eigenfunctions
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The functions Eλλλλλ(r) and Hλλλλλ(r) are orthogonal and satisfy the normaliza-
tion conditions
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The ideal cavity functions themselves satisfy the equations
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and the time-dependent expansion coefficients satisfy the equations
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The latter oscillate harmonically with frequencies ω
cλ 

= kλc. Bearing
this in mind, it is easy to obtain from Eq. (2.1) another pair of equations,
which links the eigenfunctions:

   λλλλλλ EHHE ikik −=×∇=×∇ , . (2.16)

We now turn to free oscillations in a real cavity. In the absence of ap-
preciable bulk losses, the field in such a cavity can be approximated by a
series (2.12) over the functions of an appropriate ideal cavity. The distin-
guishing features due to the difference of the boundary conditions from
Eq. (2.11) will be seen when the other functions are expanded. In order to
find the expansion for E×∇  we make use the vector identity
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Integrating this identity over the volume and using the Gauss diver-
gence theorem we arrive at
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Bearing in mind that only the metallized areas of the boundary contrib-
ute to the surface integral we find

∑ ∫ ∑ ∫ 







×+−=×∇=×∇

V S
S

V
eikV

V 1

d)(
1

d)(
1

cc
λλλλλλ HEnHEHHE .

(2.17)
In the similar way, it is easy to see that the relation
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is valid. In the transition to an ideal cavity the surface integrals in Eqs.
(2.17) and (2.18) are zero since the boundary conditions (2.11) are true.

Introducing the expansions (2.12), (2.17) and (2.18) into Eqs. (2.1) and
making use of the orthogonality relations (2.13) we get
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Then, differentiating the first equation with respect to time we elimi-
nate the function th /dd λ  with the aid of the second equation and arrive at
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We now transform the integral over the surface S

1
, where Leontovich’s

boundary condition [209] is fulfilled,

HEn Z=× , (2.21)
where Z denotes a surface impedance equal to 2/1)/( εµ  for a metal. Ex-
pressing the field H  in the form of series (2.12) we substitute Eq. (2.21)
into Eq. (2.20). Accurate to negligible terms, from Eqs. (2.19) it follows:

teckih /dd)/( λλλ −=  and, therefore,
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The term on the right-hand side with µ  = λ yields the damping of free
oscillations of the λ-th mode, which is caused by the absorption in the
cavity walls. The other terms have the sense of driving forces acting on a
given mode from caused by all of the other modes. This mode coupling
through the absorbing boundaries results from the use of the set of
eigenfunctions of an ideal cavity for the field expansion in a real cavity.

A linear coupling between the modes of a real cavity is absent if the
basis functions possess the orthogonality property on the walls:

   ∫ =
1

d
S

IS λµλµ δHH . (2.23)

The condition (2.23) is satisfied, for example, for the modes of a rect-
angular cavity. Even without an orthogonality relation, however, the
decoupling of Eqs. (2.20) is promoted by the fact that the eigenfrequencies
are not equal. If the frequency spacing between the modes exceeds the
passband of the individual mode then the mode interaction can usually be
neglected. Hence, we can retain one term with µ  = λ in Eq. (2.22). When
the mode coupling is appreciable, the basis system of functions is inad-
equate for the cavity in question. The quantity

∫
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H

represents the cavity Q-factor due to the absorption by the walls of the
cavity. Using the Q-factor, we write the right part of Eqs. (2.22) as

c( / )d /dSQ e tλ λ λω .
In exactly the same way we can make use of the integral over the sur-

face S
2
, which enters Eqs. (2.20), and write
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The Q-factor of mode coupling, Q
c
, describes the cavity losses from

emission through the holes in the cavity walls.
The only thing that remains to be done is to introduce the notion of

Q-factor for the bulk losses in the medium within the cavity,

πσ
ω λ

4
c=VQ ,

and the notion of the net Q-factor,
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and then to rewrite Eqs. (2.20)
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Its solutions are the oscillations damped at a rate

 Q2
cωκ = . (2.26)

Also, we should follow this scheme to obtain an equation describing the
oscillations forced by the laser medium in the cavity. Using the expan-
sions (2.12), (2.17) and (2.18), Eqs. (2.1) can be reduced to
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The problem of excitation of open resonators is formulated somewhat
differently [210]. The specific features are exhibited in the boundary con-
ditions, which are defined not on a closed surface but only on the reflect-
ing areas (mirrors). We should add the condition that specifies the field at
infinity. An admissible approximation, which can be used when the
eigenfunctions are sought, is to neglect the losses at the mirrors. The emis-
sion from the space between the mirrors should by no means be neglected,
since for this reason all the eigenmodes of the optical cavity are damped,
and they fall into two groups according to the damping power. There is a
relatively small group of weakly damped modes with low diffraction losses.
They are of greatest interest and should be distinguished in the field ex-
pansion

∑ += damp)()( ErEE λλ te .
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The term E
damp 

represents a group of strongly damped modes and this
continuum can be omitted in what follows.

Following in the main the same procedure as in the case of a cavity
resonator but remembering that the integration refers only to the surface
S

1
 and that radiation damping (diffraction losses) is taken into account

through the complexity of the eigenfrequencies, we again arrive at Eqs.
(2.27). By λωc we denote the real part of the eigenfrequency, the imagi-
nary part of which is included into Q

diffr
. The net Q-factor of an open reso-

nator consists of three parts describing the diffraction losses and the mir-
ror losses. The latter include, besides the absorption in the mirror mate-
rial, the removal of some of the field for its intended use. Decoupling of
the equations is possible since the modes of open resonators, which have a
different transverse structure (transverse modes), satisfy the condition of
orthogonality at the mirrors while the modes differing in the number of
half wavelengths between the mirrors (longitudinal or axial modes) are
well spaced from each other in frequency.

Deriving Eq. (2.27) we take into account the corrections to the eigen-
values of the frequency of an ideal resonator. Corrections to the
eigenfunctions are absent in this approximation.

Since the field damping in a cavity is small and the exciting sources are
of moderate intensity, it is possible to single out a small parameter

Q/ωµ =  and to present the equation in the form
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Its solutions are nearly harmonic oscillations with a slowly varying am-
plitude and phase [211, 212]
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titFtitFe ωω λλλ

∗+−= . (2.29)

Substituting Eq. (2.29) in Eq. (2.27), neglecting small terms of order µ 2

and averaging over the oscillation period T = 2π/ω we arrive at the abbre-
viated equations

    λλλλ
λ ωπωωκ

τ
PiFi

F
4)]([

d

d
c =−++ . (2.30)

The complex amplitude of the m-th polarization component is intro-
duced through the equality

        )exp()()exp()(d
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titPtitPV
V V

ωω λλλ
∗+−=∫ PE .      (2.31)

The reference frequency remains undetermined for the present. Its choice
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depends on the problem to be resolved. One should only bear in mind the
obligatory requirement

ωωω λ <<− || c .

2.1.3. Ring-Cavity Field Equations
In the previous section we have considered the cavities, whose modes are
standing waves. The cavity resonators and the open Fabry–Perot resona-
tors are among them. The ring resonators, whose modes are counter-run-
ning travelling waves, are also often used in practice. The specificity of
these cavities is connected with frequency degeneration of counter-
running waves. Due to this the weak rescattering of the waves into each
other by microinhomogeneities of the cavity optical elements or by the
objects located in the beam outside the cavity can be critical. Clearly, a
more delicate approach is needed for taking into account the coupling be-
tween counter-running waves than that which is used for the standing waves.

Let us return to Eq. (2.5). Averaging over time we obtain, in the one-
dimensional case, the abbreviated equation
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We now represent the variables as a superposition of counter-running
waves:

ikzikzikzikz ePePPeFeFF −
−

−
− +=+= 1111 , . (2.33)

In substituting Eq. (2.33) into Eq. (2.32) we bear in mind the smallness
of the field amplitude variation over the perimeter of a high-Q resonator.
Averaging over space we find
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(2.34)
The effective length of the cavity is determined by

     )1(a −+=′ εLLL , (2.35)

where L is the cavity length, L
a
 is the length of the active element. The

wave number k belongs to the discrete set of eigenvalues defined by the
cyclic condition ),(),( tzFtLzF =+ . Thus, c/ ω=′LckL  is the frequency
eigenvalue. Then we notice that the terms
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have the meaning of the loss coefficient and the mode coupling coeffi-
cients. Eq. (2.34) can be rewritten in a more compact form
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The main contribution to ±ξ  is due to spatial inhomogeneities on the
scale of order of the wavelength. The dielectric constant and conductivity
inhomogeneities are responsible for phase shifts of the scattered waves,
which differ by 2/π . Consequently, the phase difference of the mode cou-
pling coefficients +ξ  and −ξ  is equal to zero in the first case and equal to
π  in the second case. Sometimes these are referred to as the cases of
complex conjugate and anticomplex-conjugate coupling [160, 213–215].

The apparent generalization of Eqs. (2.37) extends their applicability
to the case where the wave characteristics are not the same in the opposite
directions. Putting a Faraday cell in combination with polarizers into the
laser cavity cancels the loss degeneracy (amplitude nonreciprocity) and
the phase velocity degeneracy (phase nonreciprocity) of waves. Cavity ro-
tation with respect to the axis perpendicular to the cavity plane also leads
to nonreciprocity. Therefore, the laser equations contain two loss coeffi-
cients, +κ  and −κ , and two eigenfrequencies, +

cω  and -
cω . Thus, instead

of Eq. (2.37) we have
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2.2. Equations for the Dynamics of the Material

It is a natural simplification in describing a medium interacting with a
field to distinguish a dynamical system with a finite number of degrees of
freedom. The latter is formed by only those molecules, which resonantly
interact with the field (active molecules), and only those levels are speci-
fied in the energy spectrum, between which the transitions are induced.
The effect on the dynamical system from the remaining environment (ther-
mal reservoir) is considered as a perturbation tending to equilibrium in
this system.

The dynamical system that interacts with the thermal reservoir, from
the point of view of quantum mechanics, is, in fact, in a mixed state. The
density matrix formalism is most useful to describe this system. The me-
dium polarization is expressed through the density matrix as
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∑∆
= )Tr(

1
jρjV

dP .

The summation is taken over all the molecules with a physically infini-
tesimal volume V∆ . This summation can be treated as averaging )Tr( jj ρd
over such a volume and it can be written, if the density matrix (statistical
operator) ),( rtρ  is considered as a continuous function of coordinates, in
the form

          )Tr( ρdP SN= . (2.39)

Here SN  denotes the number of molecules in a unit volume. The product

SNρ  has the sense of the volume density of a statistical operator.

2.2.1. Master Equations
The differential equations describing the evolution of the density matrix
elements, in which the relaxation terms are presented due to averaging
over the reservoir states, are sometimes called the quantum kinetic equa-
tions. These equations can be written in the form [3,5,6]:
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One should also bear in mind the conditions for the normalization and
the Hermitian character of the density matrix:

∑ ∗== nmmnmm ρρρ ,1 . (2.41)

We have used the notation: mnρ  is the density matrix element; d
mn

 is the
matrix element of the dipole operator (dipole moments); mnγ  is the relax-
ation rate of the off-diagonal density matrix element; mnw  is the probabil-
ity of a relaxation transition between the indicated energy levels; mn

0ω  is
the frequency of this transition; E is the intensity of the electric compo-
nent of the radiation field (we consider only electric dipole transitions).

Let us represent the field as a sum of quasi-monochromatic compo-
nents, the frequency of which, mnω , is nearly the same as the molecular
transition frequencies mn

0ω :
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The elements of the density matrix of a molecule in this field can be
presented as

)exp()()( titt mnmnmn ωσρ −= , (2.43)

provided that the inequalities

ωγω <<<< mn,
||
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dE
(2.44)

are satisfied. The complex amplitude of the matrix element mnσ  is a slow
variable. Substituting Eqs. (2.42) and (2.43) into Eq. (2.40) and averaging
over the oscillation period we arrive at
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The variables and coefficients of Eqs. (2.45) depend on two indices

and, generally speaking, they are sensitive to the sequence, in which these
indices are written:

)/exp(;;;; BTkww mnnmmnnmmnnmmnnmmnnmmn ωωωσσ �=−==== ∗∗∗ FFdd .

The only exception is nmmn γγ = .

2.2.2. Two-Level Medium
The approximation is such that we choose two levels from the full set of
the energy levels of the medium and consider only the transitions between
them. Then Eqs. (2.45) transform to
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Instead of two parameters, mnw , we can use a single time of relaxation

mn
mm wT /01 σ=  [6], where mm

0σ  belongs to the thermal equilibrium state.
Slightly changing the notation: 1122 σσ −=D , σσγγ == ⊥ 2121 , , taking
into account Eqs. (2.41) and omitting the unnecessary transition indices
we obtain, instead of Eqs. (2.46), a set of two equations
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Here )0(D  is the unsaturated value of D , which corresponds to 0=F .

2.2.3. Three-Level Medium: Coherent Pumping
If three levels are included, many variations are possible. Therefore, we
specialize the equations to a particular situation. Let us consider the scheme
shown in Fig. 1.2b, for which Eqs. (2.45) reduce to
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A specific feature of a FIR laser operated by this scheme is that
TkB31 >>ω� , whereas TkB32 <<ω�  and, therefore, w

m1
>>w

1m
, w

32
≈w

23
.

Thus, using the normalization condition and expressing the diagonal ma-
trix elements through 2233 σσ −=D , we rewrite Eqs. (2.48) in a some-
what simpler form:
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Deriving the maser equations, where all Tkmn B<<ω�  and the laser equa-
tions, where Tkmn B>>ω� , is recommended as an exercise.

If the coefficients of a set of differential equations, such as (2.49) differ
in order of magnitude, then it is possible to simplify them [211]. This was
noticed first in the paper [216], devoted to the problem of stability of mo-
lecular beam maser. We therefore have the term ‘Khokhlov’s method’,
which is used in Russian scientific literature [217]. In the West, this prob-
lem originates from Haken [218, 219], being associated with the method
of adiabatic elimination of variables [220–222]. The applicability of this
method will be discussed in more detail in Section 3.1 in connection with
the single-mode laser models. The subject matter is as follows.

When some coefficients are much greater than the others, the variables
also may not be equivalently important in the dynamics. Fast-relaxing vari-
ables may respond instantly (inertialess reaction) to changes in the state of
the system while slow variables cannot. Adiabatic elimination of fast vari-
ables means that corresponding derivatives are put equal to zero and that
subset of equations, which has become algebraic, is resolved with respect
to these variables.

In this particular laser problem the off-diagonal elements of the density
matrix can be the fast variables since mnmn w≥γ  [223]. Suppose that the
coherency is decay rapidly in transitions 3→1 and 2→1, i .e. ,

mnw,, 322131 γγγ >> , and that 1mγ  exceeds the velocity of any motion in
the system including Rabi oscillations with frequencies �/R dF=ω  [224].
When the whole set of inequalities

R322131 ,,, ωγγγ mnw>> (2.50)

is satisfied, we can assume 0/dd/dd 2131 == tt σσ  to adiabatically elimi-
nate 31σ  and 21σ  from Eqs. (2.49). We obtain a set of three equations:
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With a more rigid criterion, that there is no saturation in the pumping
transition,

   3131
2

3131 |/| wγ<<�Fd , (2.52)

the first two equations can be simplified still further:
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The equality of the population relaxation rates, 3121 ww = , means that
Eqs. (2.53) do not contain 22σ , i.e., they become a closed set.

2.2.4. Three- and Four-Level Media; Transition to an Equivalent
Two-Level Description
All the known ways of producing population inversion, except for laser
pumping, are based on incoherent processes and, therefore, permit a proba-
bilistic description. This is the case of a three-level medium, such as ruby,
when it is pumped by a flash lamp. Since the level spacing is much larger
than TkB  it is possible to neglect upward relaxation transition. Since the
laser levels are 1 and 2, in place of Eqs. (2.48) we have
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where 31
22

3131pump 2/|| γ�Fd=W  is the rate of the transition between lev-
els 1 and 3, induced by pumping.

This model can be reduced to an equivalent two-level one if the adia-
batic elimination of 33σ  is possible. A necessary condition is a high rate
for radiationless decays of the third level. If we use ruby, which also has
high quantum efficiency for luminescence, then we have

pump132 ,Www m>> .

Thus, we can assume 0/dd 33 =tσ  and obtain
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W
, (2.55)

which means there is only a small population in level 3. Substituting Eq.
(2.55) into the other equations and using the relation 12211 ≈+σσ  we
reduce Eqs. (2.54) to
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The inversion relaxation rate

      
1

pump1
||

1

T

WT+
=γ (2.57)

is defined not only by the decay of upper level but also by the pumping.
Without the laser action the inversion is given be the unsaturated quantity

                1
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D .                                   (2.58)

We now turn to a four-level scheme characteristic of neodymium lasers
(see Fig. 1.4). Using the same arguments as above we write
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44 σσ
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W
≈ .
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The changes in populations of the upper and lower levels obey the equa-
tions
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under the normalization condition

1332211 =++ σσσ .

If the rate of decay of the lower laser level greatly exceeds the rates of
all  processes that lead to its population, then we can assume

331122 ;σσσ <<  and 3332 σ≈= DD . After such a simplification the laser
equations can be written
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The effective rate of population inversion relaxation is given by

    
1
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||
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T

TW+
=γ ,                                 (2.61)

and the population difference without the laser action, is proportional to

   
1pump

1pump)0(

1 TW

TW
D

+
= .  (2.62)

In a three-level medium, as it seen from Eq. (2.58), the inversion is achieved
under the condition 1

1pump
−> TW , which corresponds to more than a two-

fold excess of ||γ  over 1/1 T . In a four-level medium the condition
0pump >W  is sufficient for inversion, and the laser operates at 11pump <<TW

and 1|| /1 T≈γ .
Comparison of Eqs. (2.47), (2.56) and (2.60) shows that the only dif-

ference among them is due to the coefficient of the last term in the equa-
tion for the population difference. In a three-level medium the lower laser
level is the ground state, and the emission of a photon is accompanied, as
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in a two-level medium, with a change of the inversion by two. In a four-
level medium, in which the lower level is above the ground state and this
level rapidly decays, photon emission corresponds to a change of the in-
version by one. Introducing a coefficient aβ , equal to 1 for a four-level
medium and to 2 for a three-level medium, we can write the equations in a
form combining all the cases we have considered:
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It is assumed that the dipole moment matrix is real, i.e., ddd == nmmn .
The set of Eqs. (2.63) can be considered as a generalization of the well-

known equations for paramagnetic resonant systems obtained by Bloch
[225] to the case of a two-level system of arbitrary nature. In such an inter-
pretation, the population difference and the polarization have the sense of
the longitudinal and the transversal components of some vector (energy
spin or the generalized Bloch’s vector [223–226]) in a configuration space.

2.2.5. Material Equations Specialized to an Ensemble of Moving
Atoms
The motion of atoms is essential to the form of the material equations
provided that the atoms move, without changing in state, distances compa-
rable to the wavelength. This condition is not satisfied in condensed me-
dia. However, the mean free path of gas atoms can exceed λ; if so, the
spatial dispersion has to be taken into account.

The density matrix of a moving atom is a function of time, coordinates
and velocities. Assuming that interaction with the electromagnetic field
does not change the velocity we find

       ρρρ ∇+
∂
∂= U

ttd

d
, (2.64)

where U is the velocity of the atom. This operator equation transforms to a
set of abbreviated equations for density matrix elements [227]:
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Here a, b are the indices of the upper and the lower laser levels, baw ,

are the probabilities of decay of the atomic states, and abw  is the probabil-
ity of spontaneous transition from the upper to the lower laser level.

In the model for the laser medium being considered, both laser levels
are assumed to be well above the ground state. The pumping that causes
the atoms to make transitions from the ground state to the laser levels is
represented by the terms baW , , which have the form of excitation rates.
The relative population of the ground state remains close to unity. Assum-
ing that an excitation event does not change the atomic velocity distribu-
tion function )(Uh  we have

)(),( UhtwW jjj rΛ= . (2.66)

The parameter ),( rtjΛ  that characterizes the rate of pumping to the
j -th level may have a slow dependence on the spatial coordinates and on

time.
In derivation of Eqs. (2.65) we used the assumption of none distinct

orientation in the medium. This means that the interaction with radiation
does not change the atomic dipole angular distribution either because of
weak saturation of the medium or fast relaxation of the orientation. There-
fore, the mean energy of the interaction can be represented as dF, where

3/|| 22 d=d .
The spatial inhomogeneity of the density matrix elements, at least its

small-scale component, is due to the interaction of the gas with the elec-
tromagnetic beam. Eqs. (2.65) can be slightly simplified since the trans-
verse structure of the wave beam is much greater than the longitudinal
one: zkk <<⊥ .

If the characteristic scale of any inhomogeneity is 1/k, then

jjjj wUkwU // ≈∇ σσ .

Substituting for U its most probable value 0U , we obtain the criterion
for sufficient smallness of the term jU σ∇  in the form 0/Uwk j<< . Us-
ing typical values for atomic gases, 18 s10 −≈jw , cm/s105

0 ≈U , we come
to the conclusion that it is reasonable to retain the gradient terms in Eqs.
(2.65) if k > 103 cm–1. The wave numbers that correspond to IR and, of
course, to the optical range, satisfy this criterion. Outside the beam focus-
ing region, the transverse wave numbers do not exceed 102 cm–1, as a rule;
thus, zUU jj ∂∂≈∇ /σσ . Introducing, instead of aσ  and bσ , the new vari-
ables baD σσ −=  and baS σσ += , we write Eqs. (2.65) in the form
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If abab www +=  the variable S is deleted from (2.67b) and first two

equations form a closed system
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which represents a two-level model of the active medium. In this case

abab www +==||γ . Since  2/)( ba ww +≥⊥γ  [228] (the equality corre-
sponds to the natural linewidth), we have )/(2/~

|| bab www +≤= ⊥γγγ
or 1~ ≤γ  .

Equations (2.67) can be reduced to ordinary differential equations if
the functions are expanded with respect to the basic set of travelling waves:
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where k∆  is the discrete step in the wave number spectrum, which is equal
to π/L for a Fabry–Perot resonator and 2π/L for a ring resonator. By sub-
stitution of relations (2.69) and by separation of the terms with equal coor-
dinate dependence, the material equations (2.67) can be transformed to
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In our previous considerations we ignored the fact that collisions be-
tween gas atoms change not only the internal states but also the velocities
of the colliding particles. Thus, the atom collisions produce spectral cross-
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relaxation that tends to remove the distortion of the equilibrium inhomo-
geneous lineshape. To describe this process we introduce terms in the form
of a collision integral, into the equations describing the population dy-
namics (see [31] and the reference cited):

                ∫ ′′′Γ−′Γ UtzUUUtzUUU jjjj d]),,(),(),,(),([ σσ     (2.71)

Here, UUUj ′′Γ d),(  is the probability that a gas atom will pass over, due to
collision, from the velocity range UUU ∆+,  to the velocities

UUU ′∆+′′,  unchanged in state.
For simplicity’s sake, we will use the strong collisions model, in which

the final velocity of the atoms assumes, with equal probability, any arbi-
trary value within the Doppler profile, and consider only two cross-relax-
ation parameters, )(),( ,, UhUU baba Γ=′Γ , reducing Eqs. (2.71) to

[ ]∫ ′′−Γ UUUhU bababa d)()()(
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,,, σσ .

Finally, disregarding the difference of aΓ  from bΓ , we have a single
parameter ba Γ=Γ=Γ  and write, instead of Eqs. (2.67), the set of equa-
tions
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Because of their complexity the use of equations containing cross-re-
laxation terms has been mainly limited to numerical simulations of the
laser processes [31].

2.3. Self-Consistent Semiclassical Set of Laser Equations

In the previous sections we have discussed separately the equations de-
scribing the medium polarization in a given electromagnetic field and the
radiation field ensured by a given polarization of the atomic system. Com-
bining these equations, i.e., assuming that the polarization, which is the
source of the field, is in turn, determined by the same field, we arrive at a
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self-consistent set of equations describing the laser. In general form this
set of equations is written as
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This is often called a semiclassical or quasiclassical set of equations
[229, 230] to emphasize that the field equations are of a classical and the
laser equations are of a quantum origin.

Let us reduce the problem by assuming that the medium consists of
homogeneously broadened identically oriented two-level atoms. We also
assume that the field is linearly polarized along the direction of the dipole
moment. To describe the propagation of a plane wave in such a medium
we will turn to Eq. (2.8). If we speak about an unlimited medium, then the
dispersion law ck=ω  is valid. In the case of a ring cavity the cyclic bound-
ary condition

     ),(),( LztEztE += (2.74)

determines the spectrum of the eigenvalues of propagation constant λk ,
which correspond to the cavity eigenfrequencies λλω ck=c . By L in Eq.
(2.74) we mean the perimeter of the laser cavity.

Combining Eq. (2.9) with Eq. (2.63) and assuming Fd ||  we arrive at a
scalar model of a travelling wave laser:

           σωπωωκ SdNiFi
t

F

z

F
c 2)]([ c =−−+

∂
∂+

∂
∂

, (2.75a)

    dFD
i

i
t �2

)]([ 0 −=−−+
∂
∂

⊥ σωωγσ
, (2.75b)

)(
2

)( )0(
||

∗∗ −−=−+
∂
∂ σσβγ FFd

i
DD

t

D a

�
, (2.75c)

The self-consistent set of equations obtained by expanding the field in re-
gard of the modes of an ideal resonator includes Eqs. (2.30) and (2.63):
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This set of equations will be widely used below to formulate the con-
crete laser models.
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Chapter 3

Single-Mode Lasers
The simplest single-mode models play a special role in the dynamic laser
theories. They possess extremely low dimensions and include only the most
fundamental and unavoidable nonlinearity that accompanies the process
of matter-field interaction but do not cover the mode interaction, addi-
tional nonlinear elements and external signals. The behaviour of single-
mode lasers depends on the dynamical class they belong to.

3.1. Dynamical Models of Homogeneously Broadened Lasers

In what follows we often use equations written in dimensionless form.
The advantage of using this form is its simplicity owing to which it is
possible to ‘hide’ almost all the coefficients not defined in the experiment.
Meanwhile, the normalization of the observed quantities has a clear physi-
cal meaning: the field amplitude is normalized to saturation value and the
inversion is normalized to a value corresponding to the laser threshold.

3.1.1. Equations for the Quadratic Quantities
We now turn to the laser model expressed by Eqs. (2.75). If the losses for
the separate cavity elements (mirrors) are small and, therefore, there are
no areas of abrupt field increase or decrease inside the cavity, then we can
assume 0/ =∂∂ zF . Let us introduce a table of dimensionless symbols:
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It is most convenient to choose a normalization factor t
�

 comparable with
a time scale of the time-dependent process in a laser. The hard unification
of this factor is not reasonable. The variety of possibilities dictates the
individual choice in each concrete situation. We will use inverse relax-
ation rates 1−

iγ  and 1−κ  as the normalization coefficients. In notations
(3.1) the equations become
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The complex form of equations is most compact but not always conve-
nient. Sometimes it is more reasonable to use real variables, for example,
the real and imaginary parts of f, p or its modules and arguments. As real
variables can serve also the quadratic quantities:
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These variables as well as inversion n are coupled by means of five
equations:
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that one can easy obtain from (3.2). Here ⊥−=∆ γωω /)( c0c0 . Eqs. (3.4)
are convenient, for example, for investigation the conditions of transfer to
the second order rate equations.
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3.1.2. Adiabatic Elimination of the Atomic Polarization; Single-
Mode Rate Equations
The rate equations for the inversion N and the photon number M can be
written using simple considerations based on the concept of transition prob-
ability per unit time:

     MBMN
t

M κ2
d

d −= , (3.5a)

         BMNNN
t

N
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d

d )0(
|| . (3.5b)

These equation show that the number of photons in a cavity increases due
to stimulated emission with the rate BMN (B is Einstein’s coefficient de-
fined relative to the total number of photons in the cavity), and decreases
with the rate 2κM due to the losses. The inversion N changes due to stimu-
lated emission, relaxation and pumping processes; as a result, the inver-
sion tends to the equilibrium value N(0). Eqs. (3.5) were published first by
Statz and DeMars [231] and are sometimes mentioned in the literature
under their names.

The transition probability basis for writing the rate equations is simple
and illustrative but it does not provide information on the limits of their
applicability. We can gain such information by considering more general
set (3.2) or (3.4), from which Eqs. (3.5) follow as a limiting case [232-
234].

Equations (3.5) have the same variables, m and n (although they are
renamed), which enter the system (3.4). However, the latter is of a higher
order and, correspondingly, it contains three additional variables, r, s and
q, which should be omitted provided the dimension of the model is re-
duced properly. This is achieved by adiabatic elimination of variables
mentioned in Section 2.2.3. A standard procedure consists of disregarding
of ‘extra’ derivatives, dr/dτ,  and  to find an algebraic expression for r and
through τ and eliminate them from the remaining two differential equa-
tions.

In general, it becomes possible to reduce the number of differential
equations by adiabatic elimination of part of the variables when a sub-
space with a smaller number of dimensions, in which fast motions are ab-
sent, is distinguished in the phase space of the system [211]. Starting from
arbitrary initial conditions, the representative point rapidly passes in this
subspace and then it moves along the phase space trajectories localized in
it. Following the terminology of Oppo and Politi [235], such a subspace is
called the centre manifold.

Mathematically, the motion in the system described by
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),(),,( yxGyyxFx jjii == ��µ ,

where µ is the small parameter, is very close to the motion in the limiting
system

),(,0),( yxGyyxF jji == � .

Thus, for adiabatic elimination of variables it is necessary to have a
small parameter at some derivatives. This means that coefficients are very
different in magnitude, and variables can be separated in two groups: ‘fast’
variables and ‘slow’ ones. The fast variables are able to reach the
quasistationary values determined by instantaneous values of the slow vari-
ables and to keep track of evolution of the latter.

In application to Eqs. (3.4), where the variables sr,  and q are subject
to adiabatic elimination, it can be asserted that the role of a small param-
eter is played by a quantity proportional to ⊥γ�/1  and that the first group of
conditions providing a transition for validity to the rate equations looks
like

    κγγγ >>>> ⊥⊥ ,|| . (3.6)

These inequalities are fulfilled for class B lasers. The typical values of
parameters for solid-state lasers are γ

||
= 103–104 s–1, γ⊥  = 1012 s–1, κ  =

108 s–1.
Localization of the phase trajectories in the limits of centre manifold is

guaranteed due to [211] by the negative real parts of the roots of character-
istic equation
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As applied to subsystem (3.4c)–(3.4d) the characteristic equation (3.7)
becomes
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Note that the last equation contains the quantity κ~  that can pretend on
the role of the small parameter. Using the Routh–Hurwitz criterion [236]
we obtain the condition of negativity of Reλ:
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Supposing that the criteria (3.6) and (3.8) are fulfilled, we then use the
standard procedure of adiabatic elimination of variables sr,  and q  from
the Eq. (3.4), i.e., we mean   a 0/// =∂∂=∂∂=∂∂ τττ qsr and, therefore,
we have algebraic expressions
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Substituting Eqs. (3.9) into Eqs. (3.4a) and (3.4b), we find
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Limiting by zero approximation in the small parameter κ~  we come to
the rate equations in the traditional form:
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The time scale of the processes in this system is determined by the
parameters ||γ  and k .  I t  will  be logical to use
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t . However, more often
people choose two other possibilities: 1−=κt

�
 and 1

||
−= γt

�
. Below we will

adhere to the latter and introduce the only fundamental parameter
2// || G=γκ .

Inequalities (3.6) and (3.8) do not form a complete set of conditions for
validity of the rate equations. The point is that inequalities do not give
sufficient ground to assume ⊥γ/1  as a small parameter. In order to obtain
the additional conditions we act as follows. We different the first of Eq.
(3.11) with respect to time, insert, in place of τ/ddm  and τ/ddn  their
respective values according to Eq. (3.4) and take the inequalities (3.6) into
account. The desired conditions are equivalent to the smallness of the re-
sultant expression compared to the right-hand side of the corresponding
equation in (3.4). A term-by-term comparison shows that we should add
two inequalities to (3.6):
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               γκ ~/1,~/1|| <<<< mn ,

where ⊥= γγγ /~
||

The inequalities

      κγγγκγγγ /||,,, |||| ⊥⊥⊥⊥ <<>>>>>> nm        (3.12)

guarantee the existence of the domain of slow motions of the system (3.4),
and the softest inequality (3.8) guarantee the stability of these motions.
Note, that according to Eq. (3.1), the inequality ||/γγ⊥<<m  is equivalent
to ⊥<<γW , where ⊥= γ22 /)( �dFW  have the meaning of probability of
the stimulated transition. The same inequality can be interpreted as

⊥<<γωR  where �/R dF=ω  is the frequency of the Rabi oscillations.
The rate equations can be obtained from (3.2) assuming 0/dd =τp  and

ϕiemF 2/1= . Adiabatic elimination of polarization followed by a trans-
formation to real variables yields

    







−

∆+
= 1

1d

d
2
0

n
Gm

m

τ , (3.13a)

  







+

∆+
−= 1

1d

d
2
0

m
nA

n

τ , (3.13b)

  







∆+

∆+
∆= c2

0

0

12d

d nG

τ
ϕ

. (3.13c)

Equations (3.13a) and (3.13b) differ from Eqs. (3.11) because the place
of 2

c0∆  is occupied by 2
0∆ . When κγ >>⊥ , this difference is less than the

accuracy of the approximation.

3.2. Traveling-Wave Laser with Homogeneous Active Medium

The model considered below is based on the assumption that a unique
cavity mode is excited and that the laser medium is homogeneous (spec-
trally and spatially). These assumptions are best satisfied by a unidirec-
tional ring laser. However, the spatial uniformity of inversion is also pro-
vided if a large number of modes of a standing wave type under the ap-
proximately equal conditions are involved in the laser action. The rate
equations for total radiation intensity and population difference in such a
multimode laser look like those for a single-mode laser Eq. (3.11), which
are considered in what follows.
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3.2.1. Steady States and Relaxation Oscillations
With time normalized to 1

||
−γ  and with exact coincidence of the cavity

eigenfrequency and the laser transition frequency, Eqs. (3.11) become

       )1(
d

d −= nGm
m

τ , (3.14a)

       )1(
d

d +−= mnA
n

τ . (3.14b)

The fixed points of the set of rate equations (3.14) and the solutions in
their vicinity have been considered by many authors [231, 232, 237–243].
The steady states

     11

,,0

=−=
==

bb

aa

nAm

Anm
(3.15)

can be readily found from (3.14) provided 0d/d =τ . The type of the fixed
points can be specified by linearizing the Eqs. (3.14) in the vicinity of
each of them with respect to small deviations nnnmmm −=−= δδ , .

The following linearized equations

nmAnmAGm δδδ
τ

δδ
τ

−−=−= )(
d

d
,)1()(

d

d

hold near point a. Substitution of the solutions { } { } λτδδδδ enmnm ′′= ,,
into these equations leads to the characteristic equation

0)]1()[1( =−−+ AGλλ . (3.16)

One root of Eq. (3.16), 11 −=λ  is negative, while the sign of the other,
)1(2 −= AGλ , depends on A . Where 1<A  the second root is negative

too and the fixed point is a stable node. Where 1>A  the sign of λ  is
positive and a  becomes a saddle point, i.e., the fixed point is no longer
stable. The inequality

    1>A (3.17)
expresses the laser self-excitation condition.

The motion of the system in the vicinity of the fixed point b obeys the
linearized equations

       nAmnnAGm δδδ
τ

δδ
τ

−−=−= )(
d

d
,)1()(

d

d
. (3.18)

The corresponding characteristic equation

  0)1(2 =−++ AGAλλ (3.19)

has roots
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)1(
42

2

2,1 −−±−= AG
AAλ .

The fixed point can be either a stable node if

0)1(42 >−− AGA ,

or a stable focus if the inverse inequality is satisfied. For class B lasers
1/2 || >>= γκG . Therefore, the fixed point will almost always be a focus

and Eqs. (3.18) describe the damped oscillations of laser intensity near
stationary level bm  with the frequency

         





 −=−=Ω )1(

2

1
Hz][)1( ||11 AAG κγ

π
ν (3.20)

and the decrement

                         2/1 A−=θ . (3.21)

These oscillations are generally what is meant when the term relax-
ation oscillations is used.

Equations of the form (3.20) and (3.21) hold true also in the case where
the cavity is not tuned to the line centre. One should only substitute

)1/( 2
c0∆+A  for A.

According to Eq. (3.20) the relaxation oscillations frequency is found
as a geometric mean of the inversion decay rate and the field damping
rate. Since for the more dielectric laser crystals -143

|| s1010~ −γ , and the
excess excitation over the laser threshold ranges for solid-state lasers from
tens to thousands of per cent, the relaxation oscillations frequency falls in
the range of tens kilohertz. In semiconductor lasers where γ

||
 ~ 109 s–1 and

κ ~ 1012 s–1 frequency 1ν  is shifted to the gigahertz range.

3.2.2. Phase Portrait of Laser; Spikes Characteristics
Rather full information of the transients in considered laser model could
be obtained by use of approximate analytical methods.

We will obtain the phase space trajectories equations dividing Eq. (3.14a)
by Eq. (3.14b):

     nmA

mn
G

n

m

)1(

)1(

d

d

+−
−= . (3.22)

Defining the motion in the immediate vicinity of the fixed point the
linear approximation gives an insight into the structure of whole phase
plane. To gain a better understanding of this structure we should use the
general properties of Eq. (3.22). Since G >> 1, the inclination of the phase
space trajectories is strong on the whole plane except of the domains close
to the straight lines
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        0,1 == mn , (3.23)

which are the isoclines (the lines of equal inclination of phase space tra-
jectories) with horizontally arranged tangents. The isocline with vertically
arranged tangents is given by

            1−=
n

A
m . (3.24)

Figure 3.1a shows the structure of the phase plane of a system for which
the self-excitation condition (3.17) is not satisfied. Figure 3.1b refers to
the case A>1, which is considered below. Besides the phase space trajecto-
ries, Fig. 3.1 shows the isoclines (3.23) and (3.24). It is impossible to find
exact solutions of Eq. (3.14) analytically. Therefore, some authors have
tried numerical solutions [244, 245]. However the basic parameters of the
nonlinear process can be found by the way of an approximate analysis
[242, 246]. The approximate method is based on the large value of the
parameter G, owing to which the phase space trajectories can be divided
into segments of fast and slow motions. This procedure fails near the fixed
points where, instead, the linear approximation is possible. The represen-
tative point passes slowly through the lower trajectory segments close to
the abscissa axis. The stimulated emission probability is small and the
velocity of the representative point depends solely on the rate of pumping.
The representative point passes the trajectory segment, on which the stimu-
lated emission dominates the pumping (the interval of emission), with high
velocity. For each interval Eqs. (3.14) admit simplifications based on the
neglecting of some terms and can therefore be integrated. Matching solu-
tions is facilitated by the fact that in the transient areas the pumping is
compensated by stimulated emission and the inversion is nearly constant.

The phase space trajectories in Fig. 3.1b are slowly convergent to point
b on a spiral pass. One turn to the spiral corresponds to a spike in the

Fig. 3.1. Phase portrait of the rate equation model represented by Eqs. (3.14) at the pumping
parameter values (a) below and (b) above threshold. Dashed lines indicate the isoclines.

a b
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emission (Fig. 3.2). It is interesting to note that the minimum and maxi-
mum radiation intensities correspond to the same population difference
n = 1. Since the damping rate of the spikes is slow we can solve the prob-
lem in two stages. First, disregarding the spike amplitude variation (the
conservative approximation) we find the spike amplitude, the spike dura-
tion and the interval between spikes. Then, taking account of the spike
damping as a perturbation we define the law by which the spike amplitude
is diminishes.

When we find the spike amplitude and duration we bear in mind that
the population difference varies little in a free running laser: 1|1| <<−n .
Such an assertion can be validated by a direct estimate. Consider Eq.
(3.14b), which, under the condition m << 1 is simplified:

nA
n −=
τd

d
. (3.25)

The solution of Eq. (3.25) is apparent and is given by

      τ−−+= eAnAn ])0([ . (3.26)

The time τ, over which n is varied from n(0) =1 to n
max

, is small com-
pared to unity; thus Eq. (3.26) reduces to

         τ)1(1 −=− An . (3.27)

Insertion of Eq. (3.27) into Eq. (3.14a) yields the law of field growth in
the pumping interval

  
2

min

)1(
2

1
ln τ−= AG

m

m
. (3.28)

Eliminating the time from Eqs. (3.27) and (3.28) we obtain the rela-
tionship between n and m in the explicit form

Fig. 3.2. Time-dependent solutions of the rate equations in a conservative approximation.
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2/1

min

ln)1(
2









−=

m

m
A

G
η , (3.29)

where                                       1−≡ nη  .

 It is seen from Eq. (3.24) that that the inversion maximum is achieved
at bmm ≤ . At these field intensities Eq. (3.29) is generally inapplicable.
Meanwhile, bearing in mind that the population difference is almost con-
stant near bmm =  and m enters Eq. (3.29) under the logarithmic sign, we
can adopt, without introducing a noticeable error

                               

2/1

min
max ln)1(

2








−=

m

m
A

G
bη . (3.30)

The distance the representative point penetrates into domain n > 1 is
the longer the lower its intersection with the line n = 1 is. Consequently,

maxη  must be the largest for the first spike after pumping is switched when

minm  is defined solely by the fluctuation field in the cavity. In Section
3.2.3 it is shown that 25)/ln( min ≈mmb  for all solid-state lasers, whence

1.0max ≈η .
The approximate conservative equations can be obtained by disregard-

ing the small value of η in Eq. (3.14b)

η
τ

Gm
m =

d

d
, (3.31a)

mm
n

b −=
τd

d
. (3.31b)

These equations have the integral

       0
0

2
0

2 ln)(
2

1
mm

m

m
mG b +−=−ηη , (3.32)

which describes a family of closed trajectories in the phase plane.
To find the spike amplitude we should fix a trajectory assuming

bmm == 0max0 ,ηη in Eq. (3.32). Assuming that the peak intensity

bmm >>max  and knowing that this value is achieved at η = 0, we find

         
min

2
maxmax ln)1(

2

1
m

m
AGm b−== η . (3.33)

We now calculate the spike duration, defining it as the time the representa-
tive point moves over the upper part of the trajectory between the values

bmm =max . On the segment bmm >>max  Eq. (3.31b) is convenient. Since
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the logarithmic term is small here, Eq. (3.32) is resolved with respect to m,
and the time the representative point moves along the phase space trajec-
tory between the points with equal ordinates 1mm =  is

∫
−

− −+
≈

−
=′

1

1

2/1
11

12
1

1

1
p )2(

2
ln

2

)(

d
η

η ηη
η

ηη
ητ

mGGmmb
.

If max1 mm << , then max1 ηη ≈  and confining ourselves to the linear
term in the expansion of the denominator of the logarithmic term we have

1

2
max

max
p

2
ln

2

m

G

G

η
η

τ =′ .

The time the field rises from mm =  to 1mm =  can be easily found
from Eq. (3.31a) by letting maxηη =

bm

m

G
1

max
p ln

1
η

τ =′′ .

The desired spike duration is determined by

     1

2
ln

2
2

2
max

max
ppp −

=′′+′=
A

G

G

η
η

τττ . (3.34)

The time between spikes, 0τ  , is found from Eq. (3.27)

1

2 max
0 −

=
A

ητ . (3.35)

We now propose two numerical examples.

Example 3.1
Ruby laser
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Example 3.2
Nd:YAG laser

.09.0/

;20s;8.1

;1.0;102.9

;25;105

;25)/ln(

;2

;102;s105

;s105

0p

0p

0
3

p

max
2

max

min

41-7

-13
||

=
==

=⋅=
=⋅=

=
=

⋅=⋅=
⋅=

−

−

ττ
µµ

ττ
η

κ
γ

stt

m

mm

A

G

b

The damping rate of spikes in the nonlinear regime can be calculated if
we do not use the conservative approximation. First of all, we find the

maxη  variation on one turn on the spiral (Fig. 3.3).
In the emission interval ( bmm >> ) the motion of the representative

point obeys the approximate equation

         1d

d

+
−=

η
η

η
Gm

, (3.36)

the solution of which, if the limits of integration with respect to m  are the
same, has the form

     
1

2
12 1

1
ln

η
ηηη

+
+=− . (3.37)

In the pumping interval (m << 1) equations

η
τ
ηη

τ
−== bmmG

m

d

d
,

d

d
(3.38)

are valid. Integrating Eq. (3.38) over the lower part of the spiral turn in the
limits 32 ηηη ≤≤  that correspond to equal values of m we arrive at

Fig. 3.3. Turn of a spiral phase space trajectory
in a nonconservative rate equation model.
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0ln
2

3
23 =

−
−+−

η
ηηη

b

b
b m

m
m . (3.39)

We stress once again that the population difference variation is the slow-
est near the points maxηη = . Now it is necessary to estimate the real varia-
tion rate. To do this, we expand the function )(mη  in a series in the vicin-
ity of the point maxηη = . Since the first derivative in the extremum turns
to zero,

max

2

max )1(2

)(

η
ηη

−
−−=

AG

mm b
. (3.40)

Assuming that the η  variation in one turn is the small quantity of order
2η  we will try to match the solutions of Eqs. (3.37) and (3.39). This can

be done if the values at the ends to be matched differ by less than 2η . The
criterion of validity of such an operation is obtained from (3.40):

         2
max

2 )1(2)( η−<<− AGmm b . (3.41)

Using these considerations we assume in Eq. (3.37)

min2max1 , ηηηη == .  Confining the accuracy in calculation of

121 || ηηη −=∆  to the terms of order 2η , we thereby assign the number of
terms in the expansion of the logarithm and obtain

        
2
11 3

2ηη −=∆ . (3.42)

With the same accuracy we find from Eq. (3.39) the following expres-
sion for || 232 ηηη −=∆ :

         
bm3

2 2
2

2

ηη −=∆ . (3.43)

Since the amplitude variation of the neighboring spikes is small, Eqs.
(3.42) and (3.43) can be combined:

  
2
maxmax 13

2 ηη
−

−=∆
A

A
. (3.44)

Equations (3.33) and (3.44) yield the law for diminishing of the spike
amplitude with time. From (3.33.) is follows that each spike is less that
preceding one by

maxmax ηη ∆=∆ Gm .

Submitting maxη∆  from Eq. (3.44.) we find
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maxmax13

4
m

A

A
m η

−
−=∆ . (3.45)

Dividing this expression by the time interval between the spikes (3.35)
we determine the spike envelope derivative

                                3

2

d

d

0

0max Ammm −=∆≈
ττ .

The envelope itself, representing the law of diminishing spike ampli-
tudes, is given by

)3/2exp(0
maxmax τAmm −= . (3.46)

The damping rates of intense spikes and the small relaxation oscilla-
tions appeared to be nearly the same.

The main physical result of this consideration is that system comes
back to the equilibrium position with any arbitrary departure from equilib-
rium. The regimes of undamped oscillations are beyond the scope of this
model and are not described by the simplest rate equations (3.14).

3.2.3. The Linear Stage of the Onset
After pumping is switched on, a definite time is needed for the population
difference to reach the threshold value. This time can be found by use of
Eq. (3.25) assuming in general )(τAA = . The solution of this equation
has the form

         



 ∫ ′′+= ′−

τ
ττ ττ

0

d)()0( eAnen . (3.47)

The time needed for the creation of threshold inversion ( 1=n ) is most
easily expressed in the case A = const:

      
1

)0(
lnd −

−=
A

nAτ . (3.48)

Initially, all the particles of the laser medium are at the ground level.
Simultaneously this ground level is the lower laser level of materials like
ruby, which operate on a three-level scheme, so that Snn −=)0( . For thresh-
old inversion to be achieved over a time )(1 1dd Tt ==τ , the pumping power
should be high enough to ensure that

7.1

)0(7.2
min

n
A

−= .

A typical value for a ruby laser is n
S
 = A

max 
= 10  and, therefore, A

min = 7.5
.

Rather often the pumping pulse is not of rectangular form under the ex-
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perimental conditions. Threshold inversion is achieved after the pumping
power passes a maximum and laser is operated at values A less than the
values obtained above. For estimates we have chosen A = 5.

If we deal with a four-level atomic system, then n(0) = 0 and the thresh-
old value is achieved at A = 1.5 over a time τ

d
 = 1.

The time τ
d
 we have found is not the total delay time of laser action,

which is manifested in experiment. The point is that induced emission is
absent at the time the self-excitation threshold achieved and starts to rise
after that time. It should be noted that in a system without fluctuations the
representative point, after passing the value n = 1, would proceed moving
along the n-axes, since the latter is a phase space trajectory over its whole
length. The fluctuating field (first of all, the spontaneous emission) in the
cavity causes the representative point to enter one of upgoing trajectories.
Thus, one must take into account the necessary fluctuations, in principle,
since it qualitatively changes the laser dynamics. After a triggering mecha-
nism when the laser passes the threshold, the fluctuating field in fact off
the ground until the representative point is again close to the n-axes.

Since induced emission grows from the fluctuation level we should in-
troduce a term taking into account (on the average) the spontaneous emis-
sion to estimate the time of the linear development of the first spike. The
probability of the process can be written as

)(
2

1
2 Ssp NNBBNW +== .

This value should be added to the right-hand side of rate equation in
order to find the total number of photons in the cavity (3.5)

    )(
2

1
2

d

d
SNNBMBMN

t

M ++−= κ . (3.49)

The transition to dimensionless variables follows the pattern:

)2/(,/, |||| κγβγτ BNnBMmt a === .
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βε ===

⊥� ,  (3.50)

we rewrite Eq. (3.49) as

      )()1(
d

d
sp SnnGmnG

m +=−− ε
τ . (3.51)

At the linear stage of lasing at A = const, the inversion variation obeys
the Eq. (3.27). Substituting (3.27) into (3.51) we can integrate the result-
ant equation. In the right-hand side we can put n = 1, since a small-range
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variation in n  is not essential. The solution of the linear Eq. (3.51) is
given by
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where 0m  is the field intensity at the time the laser threshold is achieved.

In what follows it will be shown that 1)1(2
d >>−AGτ , and we use it as

an assumption for the time being. In doing so we neglect the first and the
third terms in the brackets compared to the second term, since these relate
as G–1/2. Owing to this simplification, the last relation is reduced to
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Comparing Eqs. (3.52) and (3.28) it can be asserted that minm  entering

(3.28) is nothing but
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Example 3.3
Ruby laser
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Example 3.4
Nd:YAG laser
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3.3. Single-Mode Standing-Wave Class B Laser

The single-mode model of standing wave laser is described by a set of
Eqs. (2.76). Since we deal with class B laser, it is possible to eliminate
adiabatically the atomic polarization, which leads, in the absence of
detuning, to the rate equations
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)(,/, c|| rλψγτ EVVvt === .

3.3.1. Model with Extended Laser Medium
One steady state of Eqs. (3.54), namely Anm aa == ,0 , is easy to find.
The others are determined from

        12 +
=

ψb
b m

A
n , (3.56)

        ∫ =
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m

A

bψ
ψ

. (3.57)

The number of nontrivial steady states is equal to the number of the
real positive roots of Eq. (3.57). In the simplest case, the population inver-
sion is created over the entire volume of the laser rod, as assumed. At
A > 1, the left-hand side of Eq. (3.57) is a monotonically decreasing func-
tion of bm  and, therefore, this equation has an unique root.

The zero branch of solutions becomes unstable if the self-excitation
condition

           ∫ >1d2 vAψ . (3.58)

is satisfied. In order to investigate the stability of the nontrivial branch of
solutions, we linearize Eq. (3.54) in the vicinity of the states
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∂
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On assuming a perturbation of form { } { } λτδδδδ enmnm 00 ,, = , resolving



Fundamentals of Laser Dynamics

84

(3.59b) with respect to δn
0
 and substituting the results into (3.59a), we

arrive at a characteristic equation
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Our further analysis is based on the large value of the parameter G.
Thus, it can be inferred that the roots of Eq. (3.60) are divided into two
groups. One includes the negative roots with modulus of order unity. The
roots of the other group are of order G1/2. There are only two of them and
they are complex conjugate, and λλ ReIm >> . If we make use of the large
value Ω=λIm  and expand the integrand in (3.60) into a series of Ω–1,
then we can easily find the approximate values
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It is important to note that 0Re 1 <=θλ  and, therefore, the spatial field
structure does not disturb the stability of a time-independent solution.

It is interesting to compare 1Ω  and 1θ  for the cases of uniformly and
nonuniformly saturated laser media with the comparable parameter val-
ues. We can make this comparison by specifying the form of the functions

)(ζψ  and )(ζA . Consider the mode of a plane standing wave type and
assume the pumping is spatially homogeneous. Taking into account the
normalization condition, the eigenfunction of the cavity is written as

   )sin(2 ζπψ qq = . (3.62)

As a dimensionless coordinate, it is convenient to choose a/ Lz=ζ ,
where aL  is the length of the laser rod.

First of all, we determine the laser intensity in the steady state. Using
Eq. (3.62) in (3.57) and integrating under the condition of constant A we
obtain
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(3.63)
where 1ζ  and 2ζ  denote the coordinates of the boundaries of the active
element, 112 =−ζζ . Shifting the integration limits from the active ele-
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ment boundaries to the nearest points at which 0)tan( 2,1 =′ζπq , we arrive
at

   [ ] qqmb πζπ
ζ

ζ =+
′

′
2

1
)tan(21arctan . (3.64)

Since λ>>aL , such a substitution does not change essentially the re-
sult. After this it is easy to pass over to

( )1814
4

1 +−−= AAmb . (3.65)

Taking the same approximation, from (3.61) we find the frequency of
small oscillations

                  )1(1 −=Ω AG , (3.66)

and their decrement

       )1(4

3
1 −

−=
A

mA bθ . (3.67)

3.3.2. Model with the Sinusoidal Inversion Grating
In the above consideration we did not limit the shape of spatial distribu-
tion of saturated steady-state inversion. We only assumed that the pump-
ing in the volume of active element is distributed uniformly, i.e., the pump-
ing parameter A = const. However, it is clear that the real structure of the
field mode leads to nonuniform saturation of the laser medium, or, as people
often spoken, to inversion hole burning. Thus, the standing wave burns
out the inversion grating with the period 2/λ . Neglecting all of the higher
harmonics of inversion we reduce the problem to a simple enough set of
ordinary differential equations.

In this case, we present the inversion as a sum of the mean value and
the first spatial harmonic:

)2cos(2 10 ζπqnnn += , (3.68)

where
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0 Lzqnnnn =−== ∫∫ ζζζπζ (3.69)

L is the cavity length. Substituting Eqs. (3.69) into (3.54) we reduce the
latter to three ordinary differential equations:
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Fundamentals of Laser Dynamics

86

mnmnA
n

10
0 )1(

d

d −+−=
τ , (3.70b)

mnmn
n

01
1

2

1
)1(

d

d −+−=
τ . (3.70c)

The steady-state intensity of radiation is given by

( )84
2

1 2 ++−= AAmb , (3.71)

and other variables are expressed over the intensity as

      bbbb mAnmAn +−=−= 1, 10 . (3.72)

Linear stability analysis in the vicinity of this steady state leads to a
cubic characteristic equation
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The approximate value of a
2
 is valid because the parameter G is very

large for solid-state lasers.
The roots of the cubic equation can be found strictly. However, the

procedure becomes much more simple if a priori known that there is a pair
of complex-conjugate roots among them and, moreover, that

1|Im/Re| <<λλ . In this case we come to

                                     21Im a≈Ω=λ ,

(3.74)
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aaa −−≈=θλ .

Since we neglected the higher spatial harmonics of inversion, the ob-
tained results are valid only when the saturation of the laser medium is
weak, i.e., close to the laser threshold. Limiting the pumping parameter by
condition A–1<< 1, we have

        )1(
3

2 −= Amb , (3.75)
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instead of Eq. (3.71). In this limit expressions (3.74) take the form

         2/1,)1( 11 −=−=Ω θAG . (3.76)

Formulas (3.75) and (3.76) coincide with (3.66)–(3.67) in the limit of
small excess of the laser threshold.

Compare Eqs. (3.65)–(3.67) with similar formulas (3.15), (3.20) and
(3.21) obtained earlier in the model with a spatial uniform field. The ex-
pressions for 1Ω  are fully coincident. The steady-state intensities bm  co-
incide when the laser is well above threshold. However, near threshold, in
the domain A ≈1, Eq. (3.65) leads to somewhere lower values of m  than
these yielded by Eq. (3.15). The reason for this result is physically appar-
ent: the spatially uniform field interacts with all active molecules over the
entire volume, whereas for standing wave mode the field does not interact
with the molecules at the nodes at all. As for the damping rate, Eqs. (3.67)
and (3.21) coincide at A → 1, while at A >> 1 the spatial inhomogeinity of
the field increases the damping rate of small oscillations by a factor of 1.5.

Judging by the results we have obtained, the single-mode lasers with
uniform and nonuniform field in the active medium volume differ little in
their dynamical behaviours. However, one should remember that we have
considered only the case of a spatially uniform excitation of the laser rod.
Things are different if the unsaturated inversion is nonuniform: the damp-
ing rate of relaxation oscillations is especially sensitive to this factor, and
if the quantity  alternates in sign, then the steady state can lose temporal
stability. This is discussed in Section 7.2.

3.3.3. Power Characteristics
In Section 3.2.2 we estimated the spike duration and the spike repetition
rate. The agreement with experimental data is rather satisfactory. The en-
ergy characteristics of laser emission can be determined as follows. The
field energy in the cavity is expressed through the field amplitude and the
cavity volume. Making use of the relation of  to the dimensionless inten-
sity m, which is found from Eqs. (3.1), we obtain

   m
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. (3.77)

Very often it is more convenient to use the formula containing the tran-
sition cross-section rather than the matrix element of the dipole moment
of the transition d. These quantities are related by Eq. (1.2). Bearing this
in mind, we write the field energy as the number of photons
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Provided that the main energy losses in laser are due to the energy with-
drawal, the output power is found in a very simple way
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κωγ�

. (3.79)

To calculate the laser power in steady state we should substitute m =
A–1 into Eq. (3.79). The maximum power of a spike can be found from the
expression (3.33).
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out =P .

These examples show that the simplest theory adequately reflects the
energy characteristics of the free-running mode of laser operation.

Single-mode models hold a prominent place in the laser theory. In spite
of their simplicity they offer reliable qualitative and even quantitative in-
formation about some practically important features of laser emission. Yet,
a much more important conclusion is that the spike repetition rate and the
spike duration as well as spike energy and power are not very sensitive to
small perturbations of the model. Thus, there is no need to recognize such
problems when analyzing more sophisticated problems. Among the more
subtle laser characteristics is the dumping rate of the pulsations in laser.

3.4. Instabilities and Chaos in a Travelling-Wave Single-Mode
Laser

In this section, we shall discuss the dynamics of class C lasers, as gov-
erned only by the relationship between the radiation field and the laser
medium. Instabilities and complex pulsations in these lasers do not re-
quire external forcing of the system or the presence of additional nonlin-
ear elements nor even, generally speaking, mode-mode coupling. Each of
these additional factors can influence the behaviour and enrich the pattern
but the primary cause of the laser instability is more fundamental.
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3.4.1. Some history
Many authors have dwelt upon the interesting history of this problem (see,
e.g., [200,247]) but each author has the right to propose his own version.
So it seems reasonable to have a glimpse at the milestones.

Considerations of the stability of a quantum oscillator go back to the
prelaser epoch [203, 204, 216, 248]. In 1958 Gurtovnik [248] showed that
the steady-state solutions of the maser equations can be unstable in prin-
ciple. At first these considerations were provoked by an interest in the
stability of the ammonia beam maser but soon problems occurred with
paramagnetic masers, the output pulsations of which were observed with
CW pumping [69, 70]. Meanwhile the significance of this problem was
fully realized when it was found that spike-like operation was inherent in
practically all solid-state lasers [249-251].

An attempt to relate the generation of intensity spikes to dynamical
instability was made by Korobkin and Uspensky [252, 253]. They investi-
gated the threshold conditions for laser instability. Simultaneously, in the
early 60s there were the first numerical computations of the time-depen-
dent processes in quantum oscillators [254-256]. Grasyuk and Oraevsky,
as well as Buley and Cummings, even obtained nonperiodic solutions. Un-
fortunately, those results were underestimated. The point was that the in-
stability was achieved only with parameter combinations (the cavity pass-
band was more than the homogeneous linewidth and the laser threshold
was greatly exceeded) which seemed exotic at that time. And, though this
might have been related to the new concepts of nonlinear dynamics, it had
just started to be formulated and had not become widespread (the basic
paper [177] by Lorenz was published in 1963).

The situation was changed radically by Haken’s paper [176] in 1975.
Haken found that the two-level laser model, used in papers [252-256], is
fully isomorphic to the Lorenz system. Against the background of univer-
sal interest in dynamical chaos phenomena in relatively low-dimensional
systems this fact put the experimental achievement of the laser version of
the Lorenz attractor on the agenda.

Since solid-state lasers had the firm reputation of being unstable sys-
tems, the experimentalists’ primary attention was paid above all to these
devices. Meanwhile Casperson and Yariv [195] added consideration of a
laser of quite a different type having detected undamped pulsations in the
gas-discharge xenon laser output. Of course, a full concordance with the
Lorenz–Haken model was not possible, since the gain line at 3.51 mm in
xenon was inhomogeneously broadened. However, earlier Yakubovich [257]
had paid attention to the specific features of inhomogeneously broadened
media. Thereafter Idiatulin and Uspensky [258] analyzed a single-mode
laser model with a two-component gain line and showed, using this sim-
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plest example, that inhomogeneous broadening led to a remarkable lower-
ing of the instability threshold. A little bit later Fradkin [215, 259] dis-
cussed the possible manifestation of this effect under somewhat different
conditions (a smooth profile of inhomogeneous broadening, multimode
cavity). The further course of events was greatly influenced by the papers
of Casperson [194, 196, 200, 260].

His theoretical analysis focused, unlike previous work, on explaining
the particular experiment with a xenon laser.

Achievements in the early 80’s changed crucially the experimental situ-
ation with laser chaos and they included the results of Abraham and co-
workers. They realized and investigated the unstable behaviour first at 3.51
mm in the He-Xe laser [197, 198, 201, 202] and then at 3.39 mm in the He-
Ne laser [33].

Inhomogeneous broadening greatly facilitates the task of an experimen-
talist pursuing the aim of realizing and investigating complex dynamical
processes in lasers. Equally, this is a headache for a theoretician dealing
with very high-dimensional models dependent on a large number of pa-
rameters. Although some results have been obtained analytically [261-270],
much more progress has been achieved by numerical methods [270-276].
Nevertheless, “a detailed study of all candidate dynamical evolutions ap-
pears to be a Herculean task” (Abraham, Mandel and Narducci [247]).

Thus, it is clear why, being tempted to thoroughly verify the predict-
ability of the modern theory of nonlinear oscillations, the experimentalists
could not avoid the realization of Lorenz chaos in lasers. Weiss and Klische
[38] soon showed that laser-pumped FIR lasers were most promising in
this respect. A little bit later the experiments with ammonia lasers [39, 40,
42, 178–180] confirmed many predictions: the instability was reached once
the laser threshold is well exceeded, higher-order bifurcations were ob-
served, and chaos was achieved. Meanwhile, the experiments revealed an
inconsistency between these scenarios and the Lorenz–Haken model. It
should be most natural to attribute this inconsistency to the coherency of
the pumping. The nonlinear interaction between the pumping and the laser
field can be taken into account consistently but this is useful only if the
three-level model widens appreciably the possibilities for interpretation
of the experimental facts [277–287]. However, the experimental realiza-
tion of the Lorenz attractor in such lasers requires breaking of the coher-
ency of the laser field-monochromatic pumping interaction. Attempts in
this direction were made, but the main prize for the experimental realiza-
tion of the Lorenz attractor in lasers has not been awarded.

3.4.2. The Lorenz–Haken Model
Let us turn to a single-mode two-level model of a traveling wave laser
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with incoherent pumping, which in its simplest version is isomorphing to
the Lorenz system. This laser can be described by Eqs. (3.2). Since the
time normalization to 1−

⊥γ  is convenient in this case, these equations take
the form
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τ , (3.80a)

    pnfpi
p −=∆− 0d

d

τ , (3.80b)

       



 +−−= ∗∗ )(

2

1~
d

d
pffpnA

n γ
τ . (3.80c)

Here we use the following normalization: ,/~,/~
|| ⊥⊥ == γγγγκκ  i.e.,
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.
These equations can be written in their real form in different ways.

Changing from complex amplitudes to modules and arguments,
)exp(),exp( pe ϕϕ iPpiFf == , we transform Eqs. (3.80) to
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where pe ϕϕ −=Φ  and ⊥−=∆ γωω /)( c0c0 . The advantage of this form of
equations is that there is no unknown laser frequency given explicitly, and
the disadvantage is that the right-hand terms of the phase equation (3.81d)
can reach infinity. This last fact is unpleasant in the numerical simulation.
Thus, the equations are often organized so that the variables are the real
and imaginary parts of the complex amplitudes: pippfiff ′′+′=′′+′= , .
We therefore arrive at
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There is an apparent paradox in that the Eqs. (3.82) have one equation
more than the set (3.81). The contradiction is eliminated by noting that
one of the two phases comprising Φ can be chosen arbitrary. This gives
grounds to consider the corresponding variable a real one. Assuming
f′′  = 0, from Eqs. (3.82) we find the fourth-order set
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The fifth equation has become algebraic,

          pf ′′−=′∆ c , (3.84)

actually, i t  determines the unknown lasing frequency ω,  since
κωω /)( cc −=∆ .

The case of resonant tuning, 0c0c0 =∆=∆=∆ , is the simplest. If we
introduce, following [288], a variable Φ= sinFPZ , then using Eqs. (3.81)
we can see that the equation ZZ )1~(/dd +−= κτ  is valid. Obviously, Z  tends
to zero during the laser action. There are two options, 0=Φ  and π=Φ ,
for the phase difference when Eqs. (3.81) transform to Lorenz–Haken sys-
tem
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It is sufficient to put 00 =∆  to obtain Eqs. (3.85) from Eqs. (3.83).

3.4.3. Bifurcations and Their Sequences
Besides the trivial steady-state solution

   AnPF aaa === ,0 , (3.86)

Eqs. (3.85) can also have nontrivial steady-state solutions

1,1 =−±== bbb nAPF . (3.87)

The steady state (3.86) becomes unstable when the laser self-excitation
condition

     1>A (3.88)
is met, which, simultaneously, is the condition for physical existence of
the equilibrium states (3.87), since the steady state coordinate cannot be a
complex number.

Stability of the nonzero steady-state solution is investigated by linear-
ization of Eqs. (3.85) in the vicinity of the fixed point b  [27, 204, 237,
246, 252, 253, 255]. Assuming FFF b δ+= , nnnPPP bb δδ +=+= ,  and
retaining the terms linear with respect to these small deviations, we get a
linearized set of equations
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Supposing that the solution has the form { } { } λτδδδδδδ enPFnPF 000 ,,,, = ,
we reduce this uniform set of differential equations to an set of algebraic
equations. Vanishing of the determinant means the existence of nontrivial
solutions. We thus arrive at a cubic characteristic equation
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with the coefficients
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The presence of roots with the positive real part implies that the corre-
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sponding steady-state solution is unstable.
To obtain the instability condition in analytical form we can make use

of the Routh–Hurwitz criterion. Meanwhile, a better result can be achieved
under the assumption of complex roots meeting the inequality

1|Im/Re| <<λλ : approximate values of the roots can be found, as in
Section 3.3.2, by linearization of the characteristic equation in respect with
Reλ  [289]. Taking this route, we find:
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The instability condition 213 aaa >  leads to two inequalities
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The first of them requires that the cavity passband exceeds the homo-
geneous linewidth. The inequality (3.93) defines the height of the so-called
second laser threshold (assuming that the laser self-excitation threshold is
the first  one). The quantity crA  has the minimum at

)4~2)(1~(1~~~
m ++++== γγγκκ . In turn, m

~κ  decreases with γ~  reaching
its least value 3~

m =κ  at 1~ <<γ . According to Eq. (3.93), this least value
corresponds to A

cr
 = 9.

What are the real possibilities for both instability conditions to be met?
Only gases can satisfy the inequality (3.92), since a narrow gain line rather
than a wide cavity band is the decisive factor (from this point of view the
widespread term bad cavity condition is not quite suitable). To estimate
the maximum attainable pumping parameter we turn to a relation
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d
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,

which enters (3.1). Assuming parameter values ω = 2·1013 s–1, γ⊥  = 107 s–1,
κ  = 107 s–1, d = 1 Db and N

S
=1014 cm3, we find A

max
 ≈ 104. Therefore, the

excess of laser threshold, required in Eq. (3.93), is practicable in low-
pressure lasers.

The curve (3.93) is shown in Fig. 3.4 as the solid line 1. The remaining
data of this phase diagram are obtained by numerical integration of Eqs.
(3.85) [285, 290, 291]. In the region above dash line 2 only steady state
solutions of Eqs. (3.87) are stable. In the region below solid line 1 the
steady state solutions are unstable. Between these lines there is a bistability
zone within which both steady state and self-modulations are locally stable.
Bistability is accompanied by the hysteresis phenomenon with a typical
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jump-like transition from one to another stable branch of solutions at the
instability zone boundaries. If the control parameters are varied
quasistatically so that operating point on the phase diagram moves along a
trajectory s, which crosses both boundaries, the observed sequence of states
corresponds to the loop in Fig. 3.5. The diameter of the attractor in the
phase space is shown on the ordinate. The steady state conforms to a point
attractor with D = 0. The finite value of D means the presence of a limit
cycle or a strange attractor1.

The existence of an attractor with a finite diameter, immediately after
the instability boundary A = A

cr
is crossed, indicates that a subcritical Hopf

bifurcation occurs. The transient process from an unstable steady state to
developed pulsations is shown in Fig. 3.6. At first there is amplitude modu-
lation with gradually increasing depth and neither variable reverses sign at
this stage. At some time, however, this process is replaced by a qualita-
tively different mode of oscillations with sign reversal of the field and the

Fig. 3.4. Phase diagram of a single-mode two-level laser model in the control parameter
plane )~,( γA  at 4.0=�κ  [285, 290]: 1 – boundary of the domain of instability of nonzero
steady-state solutions, 2 – boundary of the domain, in which the nonzero steady-state
solutions of Eqs. (3.85) are uniquely stable; 3 – boundary between zones of chaotic and
regular behaviour. Types of the attractors corresponding to the different areas in the diagram
are shown

1In numerical simulations the quasistatic parameter variation is imitated as follows. The
first realization is calculated with arbitrary chosen initial values. Then the control param-
eter is varied be a chosen discrete step and the new realization is calculated from the set of
variable values at which the preceding solution was interrupted. These initial conditions
make it possible to avoid the transient process and exclude the solution from entering the
attractor basin of the alternative attractor in the bistability zone. The initial conditions for
the field and polarization, which are close to zero, we assigned only if the aim of the
numerical experiment is to define the boundaries of hard excitation of pulsations) dash
boundary 3 in Fig. 3.4.
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Fig. 3.6. (a) Transition from unstable equilibrium state to regular undamped pulsations in
the Lorenz–Haken model and (b) phase space trajectory projection onto the plane n, F
[291]. 0.4~ =κ ; 0.12;10.0~ == Aγ .

polarization amplitudes F and P. Excess of odd harmonics is a distinctive
feature of this radiation field envelope spectrum (Fig. 3.7). It is reasonable
to call the symmetrical pulsations ‘beats’, since the corresponding spec-
trum of the laser field does not have a central mode [290]. In the simplest
version, the beats are represented by two spectral components. It is well
known that the presence of a central mode (carrier frequency) is necessary
in the case of amplitude modulation, moreover, this component dominates.

The frequency of small oscillations near the steady state is given by

           1~~

~2
R

1

3
1 ++

Ω==Ω
γκ
κ

a

a
, (3.94)

which is derived from Eq. (3.91) using Eq. (3.90). Here )1(~
R −=Ω Aγ  is

the dimensionless Rabi frequency in the CW radiation field (3.87) with
intensity A–1. For class C the coefficient at Ω

R
 in Eq. (3.94) only slightly

differs from unity; in the limiting case γκ ~1~ +>>  Eq. (3.94) reduces to

R1 2Ω=Ω .
The frequency of settled beat-like pulsations can be estimated by as-

suming solutions of Eqs. (3.85) as { } { } c.c.)exp(,,,, 111 +Ω= τinPFnPF  dis-
regarding all higher beat harmonics. Omitting calculations we give the

Fig. 3.5.  Diagram il lustrates the
coexistence of different attractors in the
laser phase space (bistability and
hysteresis).
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Fig. 3.7. Succession of solutions to Eqs. (3.85) in the transition from the zone of regular
to the zone of chaotic pulsations through the boundary 3 (see Fig. 3.4) as the parameter γ~
is increased (A: form of the electric field envelope; B: phase space trajectory projection
onto the plane (n, F). C: spectrum of the envelope) [285]. 10.0~;0.12;0.4~ === γκ A  (a);
0.17 (b); 0.19 (c); 0.196 (d); 0.22 (e); 0.40 (f).

result: the limiting case γκ ~1~ +>>  corresponds to the beat frequency

R2 Ω=Ω . In the natural dimension we have )1(||R −= ⊥ Aγγω  which yields
22/R ≈πω  MHz at 16

||
17 s10,s10 −−

⊥ == γγ  and A=11. Experiments with
molecular FIR lasers confirm that the dynamical pulsations have mega-
hertz frequencies [247]. Undamped pulsations above the second laser
threshold can be both regular and chaotic. In Fig. 3.4 the domains of regu-
lar and chaotic behaviour are separated by a dash line. Switching from one
to another is not abrupt and includes a complex hierarchic sequence of
bifurcations sketched in Fig. 3.7.
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In the sequence of bifurcations accompanying the increase in param-
eter γ~  one should first of all distinguish the period doubling chain. In
turn, each link of this chain has fine structure illustrated by the first link as
example. As γ~  increases, the rigorously symmetric (Fig. 3.7a) regular
pulsations (RP) become slightly asymmetric (Fig. 3.7b), followed by peri-
odic doubling (Fig. 3.7c). The result of subsequent doubling bifurcations
is the intermediate state of chaos (Fig. 3.7d). Then there is the inverse
sequence of doublings, which restores the symmetric form of the pulsa-
tions but with a double period with respect to the initial one (Fig. 3.7e).
All the subsequent links, responsible for the transition from period 2 to
period 4, etc. have the similar structure. Finally chaotic pulsations (CP),
shown in Fig. 3.7f, are achieved at the end of this chain.

In the example given above the role of a control parameter is played by
γ~ . In practice, however, it is more convenient to change the pumping power
rather than try to influence the relaxation rates of the laser medium. In this
respect, it should be emphasized that the phase diagram, shown in Fig. 3.7,
admits, depending on γ~  value, three scenarios of regime change with in-
crease of the pumping parameter A:

1) CW—CP,
2) CW—RP,
3) CW—CP—RP.

Note, however, that isles of regular behaviour may occur in the sea of
chaos [292].

The passage from one region on the phase diagram to another is indica-
tive of some topological alternations on the phase space, which were de-
scribed in Ref. [293].

3.4.4. Parametric Origin of the Second Laser Threshold
This dynamical instability can be treated, at least at the initial stage, as
parametric excitation of the side modes, i.e., the process, in which the
oscillating mode plays the role of pumping. In terms of quantum theory,
we are dealing with a four-photon interaction, which satisfies the frequency
matching condition −+ += ωωω02 . Using these premises it is easy to find
the instability criteria [289]. Assume that the laser generates a three-har-
monic field

ττ Ω−
−

Ω ++= ii
b eFeFFF 11 . (3.95)

Until the side mode have small amplitudes, 1|/| 1 <<± bFF , their har-
monics will not matter so that the material variables can be presented in a
similar form:
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ττττ Ω−
−

ΩΩ−
−

Ω ++=++= ii
b

ii
b enennnePePPP 1111 , .

(3.96)
The assumed smallness of all sideband components permits one to ne-

glect the reaction of bb PF ,  and bn  to a perturbation and make use of Eqs.
(3.87).

Substituting Eqs. (3.95) and (3.96) into Eqs. (3.85), separating the groups
of terms with similar frequency dependence and neglecting the products
of small quantities, we obtain a set of homogeneous algebraic equations

0~)~( 11 =−Ω+ PFi κκ , (3.97a)

0)1( 111 =+Ω+− nFPiFn bb , (3.97b)

0)~(~~
111 =Ω+++ niPFFF bb γγγ . (3.97c)

The complex characteristic equation, which corresponds to the vanish-
ing determinant, falls into a pair of real equations:

)1~~/(~~2 22 ++=Ω γκκγ bF , (3.98)

     )~1(~ 22 κγ ++=Ω bF . (3.99)

The Eq. (3.99) coincides with Eq. (3.94) and become consistent with
Eq. (3.98) when 1cr

2 −= AFb , where crA  is given by Eq. (3.93).
A different variety of the weak-sideband approach, which is widely

practiced [194, 260, 267-269, 296], goes back to the early papers [294,
295]. The main point is to determine the susceptibility of the laser medium
in the presence of a strong oscillating mode. Expression

      )(~
)~1(~

)2(~
2

1

1 Ω=
+Ω−−Ω
Ω−−= χ

γγ
γ

iA

iA

F

P
.   (3.100)

can be derived by solving a set of two last equations in (3.97). The profiles
of side components gain and dispersion, specified by the relation (3.100),
are shown in solid lines in Fig. 3.8.

Self-modulation regime of operation exists if Eq. (3.100) is compatible
with Eq. (3.97a). It is convenient to represent the latter equation as

          κ~
1

1

1 Ω+= i
F

P
. (3.101)

The plots 1~Re 1 =χ  and κχ ~/~Im Ω=  are given in Fig. 3.8 by dashed
lines. The intersection points in Fig. (3.8) determine the frequencies of
modes degenerate with respect to wavenumber. The presence of several
frequencies like these gives grounds to talk of ‘mode splitting’ following
the terminology of the work [297]. The physical interpretation of the in-
stability conditions is that the points of intersection enter the domain of
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sufficiently strong gain.
The graphic method is not the most convenient in application to a two-

level homogeneously broadened laser. Several ways to analytical solution
of the laser stability problem have been shown above. We add that com-
parison of Eqs. (3.100) and (3.101) leads to Eqs. (3.98) and (3.99) as well.
Meanwhile, this method can be preferable in more complicated situations,
in an inhomogeneously broadened laser, for example.

3.4.5. Effect of Detuning on the Laser Dynamic Properties
Detuning between the cavity mode frequency and the center frequency of
the gain line increases the dimension of the laser model. One might think
that this leads to increased complexity of laser behaviour but the actual
tendency is opposite: the instability threshold increases and chaotic pulsa-
tions in the domain of instability are replaced by regular ones.

There is a specific complication of the problem when a detuning is
introduced since besides the variables npf ,,  we have one more unknown
quantity – the laser frequency, hidden in 0∆  and c∆ . This causes prob-
lems even in the linear stability analysis of the zero intensity branch of the
steady-state solution. A way out is to turn from Eqs. (3.2) to Eqs. (3.4),
which do not contain the laser frequency. Linearization of Eqs. (3.4) near

the zero singularity leads to a characteristic equation ∑ =− 04 j
ja λ  with

the coefficients
2

c0
2

210 )1(~4)1~(5),1~(4,1 ∆+−−+=+== Aaaa κκκ , (3.102)

2
c04

2
c0

3
3

~4)1)(1~(~4,)1~(2)1)(1~(~8)1~(2 ∆+−+−=∆++−+−+= κκκκκκκ AaAa .

Using the Routh–Hurwitz criterion we find the laser self-excitation con-
dition a

4
 < 0, or

Fig. 3.8. Plots illustrate the induced
mode splitting effect: a – gain, b –
dispersion.
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        2

2
c0

)~1(
1

κ+
∆+>A . (3.103)

The nontrivial steady-state solution of Eqs. (3.4) is given by

2

2
c0

2

2
c0

)~1(
1,

)~1(
1

κκ +
∆−−=

+
∆+= Amn bb . (3.104)

Meanwhile, it is more convenient to complete a linear stability analysis
by turning to Eqs. (3.83) and (3.84) as in papers [247, 292, 298]. If we find
the steady state directly from Eqs. (3.83) and (3.84) we have

fpfpAmn bb c0c
2

c0
2

c0 ,,,1,1 ∆−=′′=′∆−=∆∆−−=∆+= . (3.105)

The relations (3.105) agree with (3.104) provided 22
0

2
c )1~/( +∆=∆ κc .

This should be readily apparent if we make use of the equality c0 ∆−=∆ .
Linearization of Eqs. (3.83)-(3.84) near the fixed point (3.105) leads to a
quartic characteristic equation with the coefficients

22
c

2
210 )1~(~)1~()1~(~2,~2~2,1 −∆+++++=++== κγκκγγκ bmaaa ,

(3.106)

bb mama )1~(~~2,)1~(~)1~3(~)1~(~
4

22
c

22
3 +=−∆++++= κκγκγκγκγ .

The assumption of complex roots θλ +Ω= i  with a small real part
permits one to write down, instead of the characteristic equation, the equali-
ties

θθθ )3(,2)4( 314
2

1
4

23
2

1 aaaaaaa −=+Ω−Ω+=Ω+ .

The first one determines the frequency of small oscillations

         13 / aa≈Ω , (3.107)

and the second governs the damping factor

              )3( 31
2
1

32141
2
3

aaa

aaaaaa

−
−+=θ . (3.108)

Generally, finding the bifurcation value of crm  from θ = 0 requires
cumbersome calculations, but in the limit 1~ >>κ  (the necessary instabil-
ity condition is retained with detuning) we are to solve the quadratic equa-
tion

             0)1(~2)31(~2~3 22
c

3
cr

2
c

2
cr =∆+−∆−+ κκγ mm . (3.109)

At 3/12
c =∆ one coefficient of this equation turns to zero. The laser

behaviour is different on either side of this detuning [298].
If the dependence )( ccr ∆m  and Eq. (3.105) are known, it is rather easy

to obtain )( ccr ∆A . The form of the latter is illustrated in Fig. 3.9 where
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this dependence is shown by a solid line. Above this line the steady-state
solutions are unstable. We deal with a bistable system when the operating
point enters the band between the solid and the dash lines. Note that these
lines are intersected. Below the intersection point the CW laser action co-
exists of finite amplitude pulsations (a stable fixed point and a large-di-
ameter limit cycle). Above the intersection point a small-diameter limit
cycle is an alternative to a large-diameter one. Correspondingly, the bifur-
cation changes at the second laser threshold: from subcritical with small
detuning, the bifurcation becomes supercritical with large detuning. The
position of above mentioned bifurcation point in the control parameter
plane c, ∆A  depends on the coefficients. In the limit 1~ >>κ  this point is
near 3/12

c =∆  and shifts toward the larger c∆  with decreasing κ~ .
Possible scenarios of laser behaviour depending on the control param-

eter variation are illustrated in Fig. 3.10. The additional information on
Lorenz–Haken’s system, as compared to Fig. 3.4, refers to laser operation
far above threshold (A>60). Windows of regular behaviour occur exactly
in the chaotic domain. An increase in detuning restricts this domain: an
upper limit is seen for 1.0c =∆  and an upper and a lower limit are seen for

2.0c =∆ . Chaotic pulsations are cancelled beginning from 3.0c =∆  and
all higher bifurcations disappear beginning from 5.0c =∆ . Figure 3.10
shows three routes to enter the chaotic self-modulation domain: an increase
in pumping, a decrease in pumping and a decrease in detuning. It is inter-
esting to note that a transition to chaos through a succession of period
doubling (Feigenbaum’s scenario) occurs in all these cases.

The increased dimension of the system from 3 to 5 raises the question:
Is an introduction of detuning accompanied by jump-like restructuring of
the phase space of the laser? A negative answer was given in [299]. A
special investigation was required because the phase portrait plotted by
numerical integration of Eqs. (3.80) is appreciably dependent on the cho-

Fig. 3.9. Phase diagram of the
single-mode two-level la]ser
model in the control parameter
plane ),( c A∆ . The sense of the
boundaries is the same as that in
Fig. 3.4 [292].
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Fig. 3.10. Scenarios of regime
change in a two-level laser
model at different detuning
[292]. The domains of steady-
state solutions are shown by
dashed lines; the domains of
periodic pulsations by solid
lines and the domains of
irregular pulsations by dotted
lines ( 1~,3~ == γκ ).

sen reference frequency ω, which remains indefinite in the abbreviated
equations. Only for a certain reference frequency, which can be determined
by the method proposed in [299], the attractor is bilateral, like that shown
in Figs. 3.4 and 3.7. Varying ω  it is easy to lose this, as well as any other
symmetry of the attractor.

3.4.6. Phase Dynamics of a Single-Mode Laser
So far, speaking about the time-dependent processes we meant exactly the
time variations in amplitude of all variables. At the end of the Section
3.4.2 we made the sole assertion concerning the phase difference between
the field and the medium polarization that Φ can assume only two values:
0 and π, under the exact resonance conditions. The value reversal is abrupt;
physically it is switching from the field emission to absorption by the laser
medium and back [288]. Most of the time the laser is in the state of emis-
sion, and it is the state of absorption only for a short period of time.

The phase difference between the field and the polarization can easily
be determined by numerical simulation but definitely not in a real experi-
ment. One can only retrieve the field phase using the optical heterodyning
method [175]. Numerical integration of Eqs. (3.85) indicates that the field
phase changed by π at the time the field amplitude passes zero. In the
phase space of this system the phase discontinuity is associated with the
trajectory passing from the vicinity of the fixed point 1−== AFP  to

1−−== AFP  and back.
All these phase dynamics mechanisms are inherent, besides periodic

pulsations (Fig. 3.11), in chaotic pulsations (Fig. 3.12) as well.
Detuning changes the phase dynamic suggested by the numerical in-

vestigation. We mean that together with the step-like variations, the field
phase undergoes a monotonic drift [41, 300]. This drift has a pure kine-
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Fig. 3.11. Example of regular solution to Eqs. (3.80) for amplitudes and phases: (a) the
electric field amplitude envelope; (b) the electric field phase ϕ

e
; (c) the phase difference

of field and polarization Φ.
Fig. 3.12 (right) Example of chaotic solution to Eqs. (3.80). The notation and the parameter
values are the same as those given in Fig. 3.11 except for 4.0~ =γ .

matic nature and the drift velocity is subject to the reference frequency
variation. Specifically, when ω  is assigned equal to the mean laser fre-
quency, the drift is completely removed and the phase oscillation pattern
is like that shown in Fig. 3.13b.

The phase jump phenomenon can be explained in the same way as with-
out detuning, i.e., by the phase space trajectory passing from the vicinity
of one to the vicinity of another unstable fixed point. This phase jump
differs from π because of the different arrangement of fixed points with
and without detuning.

This dependence of the phase dynamics pattern on detuning should be
borne in mind when discussing the results of the experiment with hetero-
dyne detection of laser output. Heterodyne tuning is identical to the refer-
ence frequency change during the numerical integration.

3.5. Dynamics of Three-Level Lasers with Coherent Pumping

If the laser is pumped by the monochromatic radiation of another laser and
the auxiliary and the operation transitions have a common upper level (Fig.
1.2) then a two-level model for the laser medium appears to be insuffi-

a

b

c

a

b

c
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Fig. 3.13. Dynamics of the field phase of a two-level single-mode laser revealed by
numerically solving Egs. (3.80) at (a) occasional and (b) specially chosen value of the
reference frequency ω (detuning ∆

c
) [300].

cient. Such a system can exhibit the effects caused by the coherent interac-
tion between the pump field and the laser field as well as be the gain line
splitting due to the Rabi oscillations in the pumping field [6, 227, 301-
303].

We should differentiate between two cases that correspond to opposite
limiting cases of detuning. In the first case, considered below, both the
pumping and the laser field are exactly resonant with the corresponding
molecular transitions. In the second case, the difference between each fre-
quency and the corresponding transition frequency is much greater than
the molecular linewidth. This second case corresponds to the Raman laser
since the laser action is due to the two-photon interaction of fields with an
inversionless transition between level 1 and 2. The dynamics of the Raman
laser will not be considered here but it is discussed in [304–306]. In the
resonance case the one-photon transitions between level 3 and 2 are of
primary importance although the two-photon interactions mentioned above
also contribute to the lasing and should not be ignored until the conditions
for their confident suppression are provided. Essentially, we are dealing
with a resonance Raman laser, but this term has not become widespread.

Mathematically, the transition from a two-level to a three-level laser
model markedly increases the number of degrees of freedom and param-
eters of the system. The new features of laser dynamics include the emer-
gence of the second instability domain on the trivial branch of steady-state
solutions. The collection of time-dependent laser regimes and the scenarios
of regime switching due to the control parameter variation are much wider.

3.5.1. Self-Consistent Model and Ways to Its Simplification
The model consists of the material Eqs. (2.49) and the laser field Eqs.
(2.75a). The pumping field is assumed to be given. We disregard the

a b
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effects due to the orientation disorder of the laser medium, the presence of
a hyperfine structure and the different types of field polarization. These
assumptions allow one to use a scalar model, meaning by d

mn
 an average

value of the dipole moment. We also suppose that both fields are exactly
coincident in frequency with the atomic line centres. We recall that Eqs.
(2.49) are specialized to the active media of FIR lasers.

In dimensionless form

3211323232 /~,/~,/~, γγγγγκκγτ mmmnwwt ==== ,

mnmnmnS FdFNdRww
~

)~/(,)/(,/)2(~ 2/1
3232

2
3232323231 γγκγπωγγ �� ==+= ,

(3.110)

2321213
2/1

3 ,,2,~2 nnnRnRPiRP mmmnn −==== − σσσγ ,

the set of equations of a tree-level laser can be written as
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3232

32 FP
F −=κ
τ , (3.111a)
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n −+
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
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(3.111e)

         323222132
2 ~

2

1~~
d

d
PFnwnw

n γ
τ

+−= . (3.111f)

Since conditions

          },~,~,1{}~,~{ 2
3231 mnFκγγγ >> (3.112)

are satisfied, we can eliminate adiabatically the variables 3231, PP  and use,

instead of six equations (3.111), four equations

                )(~
d

d
3232

32 FP
F

−=κ
τ , (3.113a)
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                  3232
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−−+−−= , (3.113c)

      323222132
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PFnwnw

n γ
τ

+−= . (3.113d)

Adding the conditions

            2131
~~ ww = , (3.114)

          21
~/~ wRA <<γ (3.115)

we can separate from Eqs. (3.113) the set of three equations. In order to
ensure full coincidence with the Lorenz system (3.85), we have introduced
a pumping parameter ).~2/( 31

2
31 γRFA =  The number of parameters in Eqs.

(3.111) can be reduced without depleting the physical pattern. In particu-
lar, we can put .~~~,~~~

1213112131 www ==== γγγ

3.5.2. Self-Excitation Conditions
In the absence of laser action, the steady state is described by the follow-
ing solutions of Eqs. (3.111)

                       

( ) ( ) ( ) ( ) ( )
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.           (3.116)

To make it compact, we have introduced parameter 132
~2/~31

~
wwb += .

We take the deviations from steady-state solutions (3.116) as new vari-
ables

                        212132323232 ,, PPPPFF === δδδ
)(

222
)()(

313131 ,, aaa nnnnnnPPP −=−=−= δδδ .

The set of equations linearized by these variables is decomposed into
two isolated units:
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Equations (3.118) have no rising solutions. Eqs. (3.117) correspond to
a cubic characteristic equation with the coefficients

1~~,1 110 ++== κγaa ,

    
)(2
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1
)1~(~~ anFa κγκγκ −+++= , (3.119)
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where 1
~2/~1~ γγ+=c .

The Routh–Hurwitz criterion exhibits two possible ways for the roots
of the characteristic equation to pass over to the right-hand half-plane:

03 <a  and 0321 <− aaa . Bifurcation on the boundary 03 =a  means, as
in a two-level laser, the transformation of a stable node to a saddle, ac-
companied by two nontrivial solutions of the type (3.87), arising simulta-
neously. At the boundary 321 aaa =  the Hopf-bifurcation arises, owing to
which the damped small oscillations at the frequency 13 / aa=Ω  be-
come undamped. Since such oscillations cannot occur for 03 <a , the over-
lapping of two lasing areas is excluded. Satisfying the inequalities

0321 <− aaa  and 03 >a  means that the laser self-excitation occurs as a
time-dependent laser action.

The condition 03 =a  leads to a quadratic equation

         01)/()/(~~ 2 =+− RAMRAb γ (3.120)
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In a similar fashion, the equation
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with the roots coefficients:
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are obtained from the condition 321 aaa = . By K
i
 we denote the following

combination of coefficients:
2

1132111 )1~(~)1~)(~~(),2/~1~(~),1~(~~ ++++=−+=+= κγκκγγκκγγγ KRKK .

The pumping parameter A  is real and positive. As seen from Eq. (3.121),
this fact makes the existence of the first lasing area dependent on satisfy-
ing two inequalities: γ~~

42 bM >  and 0>M . Hence, a lower limit is im-
posed on the molecular concentration (limiting gain) in the laser medium

   bcbRR
~

2~/
~

21 <≈> . (3.124)

Similar considerations in application to Eq. (3.123) lead to the condi-
tion for existence of the second laser area,
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It is seen that κκ ~/)1~(
~

22 += bR  at 1~
1 =γ  and quickly increases with

increasing 1
~γ . In the limit AR >>  the asymptotic form is valid:
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It should be readily apparent that )(
2

)(
1

−− < AA , which means that the

second lasing area is completely covered by the first area and disappears
by virtue of 03 <a .

A more thorough consideration of the inequalities
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42 bM >  and γ~~
42 bM >  leads to the
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conclusion that there are the ranges of the parameter  values without the
real solutions of Eqs. (3.120) and (3.122), respectively. Numerical esti-
mates for 1~,5 1 == γR  lead to the ranges of suppression of the first lasing
area )8.0~(2.5

~
8.1 =<< γb  and )2.0~(49.3

~
01.2 =<< γb  and of the second

lasing area )8.0~(2.1
~

01.1 =<< γb  and )2.0~(6.1
~

1.1 =<< γb . Recall that

1
~ =b  corresponds to 132

~~ ww << .
Figure 3.14 shows the phase diagram illustrating the influence of the

parameter γ~  on the laser threshold. As the second control parameter, we
have taken the normalized Rabi frequency in the pumping field

32

31311
2

31
31R 22

~~

4

~

γ
γγγ

�

Ed

R

AF ===Ω .

This choice is reasonable, since RΩ  remains finite for 0~ →γ , where
)(

1
+A  and )(

2
+A  shift toward the infinity. It is interesting to note that the

second lasing area is absent for large γ~  and that the bifurcation bound-
aries intersect. Clearly, only the outside part of the second area, which is
not covered by the first area, is physically meaningful. However, numeri-
cal integration of Eqs. (3.111) indicates [281] that the influence of the
second area is exhibited as instability of the steady-state solution in the
first area (involving the nonzero branch of steady-state solutions, as stated
in [281]). For R >> A this influence is not essential.

Fig. 3.14. Diagram illustrates the influence
of control parameters γ~  and R31Ω  on the
threshold conditions of a coherently pumped
three-level laser [303]. The Rabi frequency
in the pump field is laid off on the abscissas
axis; the dash line stands for the unstable
steady-state solutions branch.

0.1~;5;10~ === γκ R  (a); 0.8 (b); 0.7 (c);
0.6 (d); 0.2 (e)

a

b

c
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3.5.3. Lasing Modes
The lasing branch of steady-state solutions (3.111) is described by a set of
equations

31
2

32313132213232 /)(2),1)(/(2, FFnPnFFPFP +−=−== ,

)(~~2,~
2

1~~
313132211

2
323221 PFFPFnwnw +=+= γγγ ,

0
2

1
)32(~

3221231211 =+−−+ FPnnRFPγ ,

which are reduced to a biquadratic equation
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~
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(3.126)
where γγ ~/~21~

1+=r . Since the coefficient of 2
32F  is more than zero, the

condition for existence of the positive root of Eq. (3.126) is reduced to
negative value of the free coefficient of this equation. The task reduces to
a search for the roots of the quadratic equation

      0)1~(~2]~)1~(
~

2~[
~

1
2

311
4

31 =−+−−−− rFrbrRFb γγ ,      (3.127)

between which the area of stationary lasing is situated. Note, however,
that Eqs. (3.127) is identical to Eq. (3.120). As was to be expected, the
region of existence of the nonzero solutions of the initial system coincides
with the region of unstable trivial solutions. It should be mentioned that if
criteria (3.112) and (3.115) are satisfied, then Eq. (3.126) is reduced to the
same expression for the steady-state output, 12

32 −= AF , which was found
for the Lorenz model [see Eq. (3.87)].

Information on the time-dependent solutions is obtained by numerical
integration of Eqs. (3.111) in two limiting cases. In the first, the inequali-
ties (3.115) are not satisfied and the limits of smallness of parameter A/R
are not observed [281, 303]. This means that both the Rabi splitting of the
gain line in the pumping field and the nonlinear interaction of the pumping
with the laser field are noticeable. The effect is most pronounced when the
two laser domains merge as shown in Fig. 3.14. Irregular solutions are
observed here among the numerical solutions of Eqs. (3.111).

In the other limiting case, A << R, the pumping transition is far from
saturation, so that the gain line is not deformed initially. Fig. 3.15 shows a
phase diagram of such a laser in the control parameter plane 1

~, γA , which
gives an idea of the influence of the rate of coherence decay in transitions
1→3 and 1→2 on the laser dynamics. As in Fig. 3.4 the solid line shows
the instability threshold of steady-state solutions and the dash line shows
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the boundary of hard-excitation of pulsations. The dotted and dash-dotted
lines denote the transition bands between the domains of regular and cha-
otic behaviour.

The case with high 1
~γ  is qualitatively the same as the Lorenz case, as

was to be expected. However, things differ as 1
~γ  decreases. Here, unlike

the Lorenz–Haken model, there is a domain of asymmetric pulsations of
the amplitude modulation type. The scenario of transition from RP(B) to
RP(A) through the chaotic self-modulation band is apparent from Fig. 3.16,
the frame of which follow the 1

~γ  profile for a fixed parameter A. The
sequence of bifurcations between Fig. 3.16a and Fig. 3.16b imitates the
one given in Figs. 3.7a-e and omitted. Then, through a chain of successive
complications of the symmetric pulsations, we get deterministic chaos (Fig.
3.16c) like the one shown in Fig. 3.7f. All these bifurcations occur in the
band confined by dotted lines 3′  and 3′′  in Fig. 3.15.

A further decrease in 1
~γ  results in qualitative restructuring of the cha-

otic process. A double-sided attractor with irregular transition of the phase-
space trajectory from the vicinity of a saddle-focus point to the vicinity of
an alternative one (the phase of the field envelope undergoes a jump of π )
transforms to a single-sided one. The field amplitude oscillations that cor-
respond to a single-sided attractor do not show any phase jump of π , and
the odd and even harmonics are equally represented in the spectrum. The
attractor escapes from the domain of single-sided chaos into the domain of
regular nonsymmetrical pulsations through an inverse period doubling se-

Fig. 3.15. Phase diagram of a single-mode three-level laser model in the control parameter
plane ( 1

~,γA ) [284]. 1000;015.0~;0.4~;15.0~
1 ==== Rwκγ .
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quence (Fig. 3.16d shows pulsations with period 8 and Fig. 3.16e shows
pulsations with period 2) and finally arrives at a simple periodic regime of
the amplitude modulation type (Fig. 3.16f).

Numerical simulations have shown that the pattern given in Fig. 3.15 is
not sensitive to the parameters 1

~w  and R until the inequality (3.115) is
satisfied. Quantitatively, the whole process is very dependent on the pa-
rameter γ~ : as γ~  grows, boundaries 1 and 2 are shifted to the right and the
domain of chaotic pulsations is broadened.

3.5.4. Experimental Investigations of Optically Pumped Ammonia
Lasers
The scheme of the experimental setup is presented in Fig. 1.22. Its cre-
ators did their utmost to satisfy the requirements of the Lorenz model. The

Fig. 3.16. Succession of solutions to Eqs (3.111) that occur in transition from the zone
of regular single-sided pulsations to the zone of regular double-sided pulsations through
boundaries 3 and 4, Fig. 3.15 [284].

60.2~;100;12;015.0~;0.4~;15.0~
11 ====== γκγ RAw  (a); 2.45 (b); 2.44 (c); 2.42

(d); 2.40 (e); 2.30 (f). A: form of the electric field envelope; B: phase space trajectory
projection onto the plane ),( 32Fn ; C: spectrum of the envelope.

a

b

c

d

e

f

A B C
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homogeneity of the broadening is favored by the monochromatic pump-
ing. The pumping frequency is specially shifted from the center of the
absorption Doppler line with the aim of selectively exciting a group of
molecules with a definite nonzero velocity component in the direction of
the pumping beam. This is to provide the conditions for a travelling wave
generation in the direction opposite to the pumping wave. The linear dis-
tortion of the gain line shape by the coherent pump field is a minimum in
this case [305].

Heterodyne detection of the laser field is of fundamental importance in
this experiment. This method makes it possible to gain information on the
field amplitude and phase dynamics while the homodyne detection reveals
only the intensity characteristics. However, if the laser intensity alone is
recorded, then it is unclear whether or not the field envelope reverses sign
during the pulsations or the laser oscillations occur one way from the zero
line of the field amplitude.

The results of experimental investigations of the dynamics of ammonia
lasers operating at different wavelength (81 mm, 153 mm and 376 mm) are
given in Refs. [39–41, 178–180, 182–186, 308]. From these references it
is seen that essential control parameters include: the gas pressure, the pump-
ing intensity, the cavity Q-factor and the relative detuning of the cavity
from the gain line centre.

The ammonia pressure exerts a very strong influence on the laser
behaviour. In the range of pressures above 6 Pa the main features of the
dynamical behaviour are consistent with the predictions of the Lorenz-
Haken model:

– The instability of CW lasing is reached only in the region of rela-
tively low pressure (less than 10 Pa) since the bad cavity condition is ful-
filled here. The growth of the second threshold with respect to the first
laser threshold with an increase in gas pressure can be compensated, within
some limits, by increasing the cavity losses (using a variable iris diaphragm,
for example).

– The subcritical Hopf bifurcation is observed at the instability thresh-
old when the laser cavity is tuned to the gain line centre. The resulting
large-amplitude pulsations can be both regular (15NH

3
 laser with λ  =

376 µm) and chaotic (15NH
3
 laser with λ = 153 µm and 14NH

3
 laser with

λ  =  81 µm).
– For central tuning the chaotic process looks like a sequence of as-

cending pulses terminating for random times (the ‘spiral chaos’). The tran-
sition from one pulse sequence to another is accompanied by a jump of the
field phase by π (Fig. 3.17). This indicates that the attractor has a double-
sided spiral form characteristic of the Lorenz model. Within each mono-
tonically growing pulse sequence the pulse shows a linear evolution. The
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average slope of the phase during a spiral depends on the reference (het-
erodyne) frequency and on the cavity detuning. However, the linear evolu-
tion is affected by the phase modulation synchronous with the intensity
pulsing. The modulation index is anomalously large from the viewpoint of
the Lorenz model.

– In the case of detuning of the laser cavity from resonance the laser
behaviour is similar to that predicted by the complex Lorenz model at least
in the range of relatively high gas pressure from 6 to 10 Pa. As the laser is
tuned towards line centre its dynamics starts with CW emission, which is
then followed by periodic pulsing. This is followed by a periodic-dou-
bling cascade ending in an intermediate chaotic range. The latter has high
periodic windows and then it followed by the period-three attractor. The
final point of these transformations is the Lorenz-like spiral chaos approxi-
mately at the line center1.

– The correlation dimension d
2
, which was calculated using the experi-

mental data, was found slightly above two. About the same values are of-
fered for spiral chaos by the Lorenz model calculations with laser param-
eters.

The difference between the laser behaviour and the Lorenz model in-
creases with a decrease in gas pressure and an increase in pumping power
since these two factors make the nonlinear phenomena due to the coher-
ence of pumping more important. Thus, even for a pressure below 8 Pa the
threshold of instability of steady-state lasing is lower than the allowed for

2These results have been obtained in the experiments with a laser operating at wavelength
81 mm.

Fig. 3.17. Double-sided chaos observed in the output of an ammonia FIR laser at a
wavelength 153 µm at a pressure 9 Pa [41]; (a) intensity; (b) phase of the laser field (the
vertical scale reads to π).
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the Lorenz model. At low pressures, instead of the double-sided (Lorenz)
attractor, a single-sided (Roessler) attractor can be observed, when the
phase space trajectory is localized near one of the unstable fixed points
without jumping to the vicinity of another fixed point (Fig. 3.18).

At lower gas pressures and higher pump power the laser can exhibit
routes to chaos that differ from the Feigenbaum scenario. For example,
various types of intermittency were observed at λ = 81 µm, if the chosen
gas pressure lies in the range 3.5–6 Pa and the pumping power exceeds
3 W/cm2.

Which model of laser best agrees with the experimental results: a three-
level, the Lorenz model or some other model? After comparing the experi-
mental data with the numerical calculations the authors of Refs. [183, 186]
were inclined to think that in the optimal region of operating gas pressures
the Lorenz model is preferable, while a three-level model (for laser pa-
rameters adopted in the calculations) is not so good. This is because the
solutions are very sensitive to the choice of a control parameter such as

3211 /~ γγγ m= , and this parameter is known rather approximately. There-
fore, it seems to be more correct to say that for parameters used in the
numerical calculations (they have been given previously), the best agree-
ment with the experiments is yielded by the Lorenz model. It can be para-
phrased as follows: since the Lorenz model is a particular case of a three-
level model, it is not excluded that the difference of the parameter, which
was used in the calculations, from the true value is beyond the admissible
limits.

Discussing the problem of finding an adequate model of a laser with
coherent optical pumping it should be kept in mind that there are at least
two more factors that attenuate the coherent interaction of the fields. One
is due to the hyperfine structure (degeneration) of the laser levels. In Ref.

Fig. 3.18. Single-sided chaos observed in the output of an ammonia FIR laser at a
wavelength 153 µm at a pressure 5 Pa [41].
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[309] it is shown that taking into account the hyperfine structure of the
upper laser level, common to the pumping and laser transitions, makes the
laser behaviour dependent on the field polarization. The laser behaviour is
most similar to that predicted by the Lorenz model when the fields polar-
ization are linear and orthogonal.

The second factor is the inhomogeneous (Doppler) line broadening, a
trace of which remains in spite of the monochromatic pumping. The print
is that the common upper level of the molecule can split under the action
of both the pumping field and laser field (AC Stark effect). Accordingly
the absorption line is distorted, and that strengthens the interaction of the
pumping with different groups of molecules. In Ref. [310] the authors cal-
culated numerically three-level laser model represented by 217 equations,
which means the partition of the active medium molecules into 24 mono-
velocity groups. By its dynamical properties, this model is more similar to
the Lorenz model than a three-level homogeneously broadened laser model.

3.6. Effect of Inhomogeneous Broadening on the Laser
Dynamic Characteristic

As mentioned above, the dynamic instability phenomenon in lasers can be
attributed to the nonlinear deformation of the gain line. In a homogeneously
broadened medium, the unique mechanism to ensure favourable conditions
for the growth of sideband components in the radiation spectrum is due to
Rabi oscillations. The second mechanism is due to the hole burning by
selective saturation of part of the line by a monochromatic field and is
characteristic of inhomogeneously broadened media. The instability thresh-
old is lowered in the second case since the saturating power is much less
than required for Rabi oscillations.

3.6.1. Lowering of the Instability Threshold
The generalization of Eqs. (2.75) to the case of inhomogeneously broad-
ened laser medium leads to the following traveling wave laser equations:
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Confining ourselves to the case of fine adjustment of one mode to the
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inhomogeneous line centre 00ω  we keep to the equality 00c ωωω == ,
which, of course, is valid for a symmetrical gain line. We transform Eqs.
(3.148) to a dimensionless form in accordance with Eqs. (3.1) assuming

1−
⊥= γt

�
 and adding czu /,/)( 000 ⊥⊥ =−= γζγωω . If the inhomogeneous

broadening has a Doppler nature, then ⊥= γ/kUu . In this way, Eqs. (3.128)
can be transformed to
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First of all, we will find the steady-state solutions of Eqs. (3.129). If
the gain and loss are uniformly distributed over the cavity perimeter, then
f  is independent of the space coordinate. Assuming that all the deriva-

tives in Eqs. (3.129) vanish we find
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where 2|| fm =  is determined from
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Based on relation (3.131), we define the pumping parameter. We note
that when the laser is at threshold, Eq. (3.131) transforms to
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Putting )()0()( uhu Λ=Λ  and dividing Eq. (3.131) by Eq. (3.132), we

arrive at
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In the limiting case of homogeneous broadening, where )0()( δ=uh ,
Eq. (3.133) is reduced to mA +=1 , which is identical to Eq. (3.87).

Of the distribution functions capable of approximating a real situa-
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tion in a homogeneous broadened laser medium, the Lorentzian function
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π
seems to be preferable mathematically, since it permits integration on closed
form. Thus, Eq. (3.131) reduced to

Aumm =+++ )1(1 0 . (3.134)

We now investigate the steady-state resonant lasing mode for stability
with respect to its own perturbation following references [262–264]. Gen-
erally, this analysis uses the scheme represented in Section 3.4. Since all
other modes, except for the resonant mode, are beyond the scope of our
consideration, there is no need to retain the derivative ζ∂∂ / . Therefore,
assuming that f  is a real quantity and pipp ′′+′=  Eqs. (3.129) can be
rewritten as
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We then linearize these equations, substituting
{ } { } { } λτδδδ enpfnpfnpf ,,,,,, +=  into Eqs. (3.135) and discarding the
nonlinear terms with respect to small deviations in npf δδδ ,, . We thus
arrive at
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which can de inserted into Eq. (3.135a). Taking into account Eq. (3.130)
leads to a characteristic equation
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Transforming the integrand we rewrite Eq. (3.137) as

∫∫
∞

∞−

∞

∞− ++
Λ++








++
−

+
Λ

−+
−−+=

+
++

222 1

d
)~(~d

1

11

1

~)1)(~(~
1

~
)~(

um

u
u

umuBBm

mB γλκγγλκ
λ

κλγλ ,

and, in view of Eq. (3.131), as
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By integration for the Lorentz distribution function and taking Eq.

(3.134) into account we find from Eq. (3.138)
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The last difficulty on the way to an analytical solution of the laser sta-

bility problem is due the irrational form of Eq. (3.139). We can remove
this headache by multiplying Eq. (3.139) by
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thus creating extra roots. In general, such a method involves cumbersome
algebraic transformations. The procedure is much easier in two limiting
cases:

00 =u for the pure homogeneous broadening,

∞→0u for the limiting inhomogeneous broadening.

The first case was considered above. In the second case Eq. (3.139)
transforms to
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Squaring both parts of Eq. (3.140) yields an eight-power equation. This

is reduced to a six-power equation in the particular case 1~ =γ , in which
Eq. (3.140) becomes
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(3.141)
where mB ++= 2)1(λ . It can be easily seen that among the roots of the
characteristic polynomial obtained by squaring Eq. (3.141), there is λ  =
–2. Thus, we should only analyze the roots of the equation
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Assuming the Hopf bifurcation and substituting the bifurcation value
of the root Ω±= iλ  into Eq. (3.142) we obtain a pair of real equations
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which rule out the pulsation frequency and the critical intensity m
cr
. It is

easy to switch from Eqs. (3.144) to an equality
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a substitution of which into Eq. (3.144a) leads to a cubic equation
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It is seen that in the limit 1~ →κ  all nb  except 0b  are negative. Hence,
a positive definite solution of the cubic equation can exists only in the
case 1~ >κ . Recall that for a homogeneously broadened laser the corre-
sponding inequality would look like γκ ~1~ +>  or 2~ >κ  for 1~ =γ . From
Eqs. (3.146) it is apparent that the asymptotic form 5

cr )1~( −−→ κm  is
valid in the limit 1~ →κ . In the limit 1~ >>κ  the bifurcation value

)~3/(4cr κ=m (3.147)

can be found by applying the Routh–Hurwitz criterion to Eq. (3.142) with
coefficients (3.143). The small oscillation frequency at the instability
threshold is given by
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3.6.2. Time-Dependent Laser behaviour
In the numerical simulation of time-dependent processes in gas lasers there
is no need to give up the Maxwellian molecule velocity distribution. Such
investigations confirm that in the case of inhomogeneous broadening there
are the parameter ranges where the laser exhibits the bistable properties
[311–313]. The phase diagrams presented in Fig. 3.19 show only quantita-
tive differences in the position of the time-independent and time-depen-
dent laser mode stability boundaries for different values of the broadening
ratio of the laser medium. The tendency is that as the broadening ratio u

0

increases, the instability threshold is lowered and the instability band is
narrowed.

In the numerical investigation of the steady-state processes in
inhomogeneously broadened lasers there is always the question of what is
an adequate laser model. Rigorously speaking, one should take into ac-

Fig. 3.19. Phase diagrams of a single-mode laser model in the control parameter plane
A,~/1 κ  at 1.0~ =γ  (a); 0.2 (b) for three values of inhomogeneous broadening parameter

5.00 =u ; 1.0; 2.0. The boundaries mean the same as in Fig 3.4 [318].
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count the features inherent in real gas lasers such as the spectral cross-
relaxation or the finite lifetime of the lower laser level. The influence of
each of these factors was investigated in [31, 274]. Numerical integration
of Eqs. (2.72) and their simple versions were performed for the set of pa-
rameters corresponding to a xenon gas laser. It should not be a surprise
that a more general model ensures a more detailed agreement with the
experiments. Stepwise elimination of cross-relaxation terms and reducing
to a two-level system influences the quantitative estimates without lead-
ing to qualitative changes. Even adiabatic elimination of the field ampli-
tude ( 0/dd =τf ) does not have dramatic influence on the laser processes.
Only in the rate equation form ( 0/dd =τp ) does the steady-state solution
remain stable for all the parameter values assigned in [274]. This should
be natural, since among the conditions for adiabatic elimination of the
polarization (3.12) there is 1~ <<κ  in contradiction to the necessary insta-
bility condition 1~ >κ . These results prove the qualitative efficiency of a
two-level model (2.70), which is generally adopted in theoretical papers.

Numerical simulations indicate that there are two types of time-depen-
dent solutions for laser intensity. They differ in form of structure elements:
there is either a pulse of smooth shape or a burst with oscillatory damping
[31, 199, 271, 274, 275]. Both of them are observed in the xenon laser.
The oscillating bursts are contributed by a decrease in the parameter γ~
and an increase in pumping. At 2~ =γ  (the limiting admissible value),
immediately above the instability threshold, the field envelope oscillations
are nearly harmonic, but the process ceases to be regular as the pumping
increases [271]. The Feigenbaum period-doubling scenario is followed in
the route to chaos in this case. In general, it is found that the different
regions of periodic pulsations are separated by zones of chaotic behaviour
in the parameter space. This is illustrated in Fig. 3.20 where calculations
are compared to experiment.

As in the solutions to the model of the homogeneously broadened laser,
the field amplitude can be symmetric and asymmetric with respect to the
zero value [199]. The first type of solutions corresponds to the field spec-
tra without power at the carrier frequency and the second type corresponds
to the spectra with a pronounced central component. The domains of regu-
lar symmetric and regular asymmetric pulsations are separated by zones of
chaotic behaviour in the parameter space.

The influence of cavity detuning on laser dynamics needs further in-
vestigation. Clearly, a determining role is played by the decrease in gain
as the frequency recedes from the line centre. Therefore, the laser mode
change due to shifting toward the inhomogeneous gain line wing is de-
fined by the regime of the tuned laser. The general tendency is toward a
simplification of the process as detuning increases [199]. However, we
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should not attribute the restructuring entirely to the change in effective
gain, since the numerical calculation shows a variety of transitions to chaos.
Chaotization following a quasiperiodic sequence of Ruelle-Takens, where
incommensurate frequencies arise in the pulsation spectrum, is mentioned
in [276]. In this paper it is also found that the steady state can turn to chaos
in a hard manner as the cavity Q-factor decreases.

Since the dynamic theory mainly describes the travelling wave regime,
the experimental investigations of unidirectional ring lasers are of primary
interest. The experimental results were partly mentioned at the end of Sec-
tion 1.2.3. The data obtained by way of heterodyne signal measurement
revealed the existence of the regime of sharply asymmetric pulsations, in
the spectrum of which the central component dominates, and the regime of
symmetric pulsations with the sideband components prevailing [199]. The
experimental data are in good agreement with the numerical investiga-
tions of a two-level model.

Also, the behaviour of the field spectrum components generated by a
single-mode standing wave laser in time-dependent regular regimes (a He-
Xe laser with λ  = 3.51 µm and a He–Ne laser with λ  = 3.39 µm) was
thoroughly investigated by optical heterodyning [314]. The results can be
interpreted as an exhibition of effects of the Lamb dip on each spectral
component when it returns through the line centre region. The presence of
several components, each interacting with two groups of atoms, shed new
light upon the nature of complicated behaviour of standing wave lasers.

Fig. 3.20. Theoretical (lines) and experimental (circles) pulsation frequencies of a xenon
gas discharge laser as the function of pumping parameter. Dash lines indicate the regions
of chaotic output [31].

a b
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Chapter 4

Multimode Lasers with
Frequency-Nondegenerate
Modes
In the previous chapter, the fundamental mechanism of laser dynamics was
considered, which is the coherent interaction of laser field with the active
medium inside the cavity. This mechanism works also in multimode lasers
where it leads to Risken-Nummedal-Graham-Haken instability of station-
ary oscillations, which is analogous to the Lorenz instability in single-
mode lasers. However, in multimode lasers the dynamic behaviour is more
often determined by nonlinear mode interaction.

4.1. Rate Equations Model with Spatial Mode Competition and
Its Time Independent

Solutions

There are several varieties of the rate-equation laser models. In this sec-
tion we consider the simplest of these models, which take into account
only additive saturation of the laser medium by lasing modes. The
nonstationary processes in such lasers are limited by relaxation oscilla-
tions that form the set of low-frequency eigenoscillations of the model

4.1.1. Combination Tone Mode-Mode Coupling. The Rate Equations
of the Multimode Lasers
The rate equations can be generalized to describe a multimode laser fol-
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lowing the procedure proposed in [316]. Unfortunately, the conditions of
their validity remain unknown. Inequalities (3.12) now become insuffi-
cient, since there are intermode beat frequencies in the envelope field spec-
trum if many nondegenerate modes are excited simultaneously. In a non-
linear system, such as the laser, the beats lead to a combination coupling
between modes, which is absent in the rate-equation model. Therefore it is
advisable to move carefully along the whole route from the general nona-
diabatic system to the rate equations [289, 317, 318].

First of all, adding to Eq. (3.1) some new dimensionless quantities,

κωωγωωψ /)(,/)(),(,/ 0cc0c −=∆−=∆== ⊥ kkkkkk EVVv r ,    (4.1)

and denoting the mode amplitude as φ
k
, let us write equations (2.76) in a

dimensionless form
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It is convenient to choose the reference frequency ω equal to ω
0
 be-

cause in this case ∆
0
 = 0 and this quantity is absent in Eq. (4.2b).

Let us present solutions of the set (4.2) in the form
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We assume that the time dependence of variables µνnnpf bkk ,,,  is

slow on the scale of the intermode beats. Substituting Eq. (4.3) into Eq.
(4.2b) and using the harmonic balance principle, let us pick out terms with
the same frequency dependence in the resulting relation. Assuming that
conditions (3.12) are met and disregarding τd/d kp , we come to

    
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Here 1)1(
~ −∆−= kk iF . The designation

])(exp[ τγδ νµρρµν ∆+∆−∆−∆= ⊥ kk i
�

means that we keep in Eq. (4.4) only the terms with k∆≅∆−∆+∆ νµρ .
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In the next step we transform Eq. (4.2c) using Eqs. (4.3) and (4.4). A
rather simple result such as

∗∗+
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n b )(~/)(1[2 , (4.5)

can be obtained if the combination sum in Eq. (4.4) is small and the in-
equality

||
d

d1
µν

µν

µν

γ
τ

∆−∆<< ⊥
�n

n

is fulfilled.

We then turn Eq. (4.4) replacing µνn  by Eq. (4.5):
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Using Eqs. (4.3) and (4.6) we can transform Eq. (4.2a) to
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Here
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The first term in the curly brackets describes the saturated gain coeffi-
cient of the k-th mode. The second term originates from the combination
scattering of modes on the inversion gratings vibrations: each pair of modes
induces oscillations of inversion with the beats frequency. These oscilla-
tions scatter the third mode thus producing a combination tone near the
fourth mode. In particular, the combination sum contains terms with ν = ρ,
µ  = k, which describe the situation when the scattering component coin-
cides with that of interacting modes. These terms differ from others be-
cause they do not contain phases. Adding equation (4.7), which governs
the dynamics of the slow component of the inversion, we obtain a closed
set of equations
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f
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where 12 )1(
~

Re
~ −∆+== kkk FL is the Lorentzian function of the line shape.

Neglecting terms responsible for the four-wave mixing we reduce this
set to the rate equations
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The assumptions we made in order to pass from Eq. (4.2) to (4.10) need
comments.

1. The harmonic balance principle is valid if the intermode beats have
frequencies higher then the other oscillatory processes (the relaxation os-
cillations, for instance).

2. By use of Eq. (4.5) the condition 1|/| <<bnnµν  can be rewritten as

1
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It does not necessarily mean that the combination sum in Eq. (4.6) is
small. If the laser spectrum is nonequidistant and the beats are noncoherent,
the sum can be small even when the condition (4.11) is not satisfied. If the
spectrum is equidistant ( ∆=∆−∆ lµν  where ∆ is the intermode frequency
spacing, and l is an integer), the smallness of the combination sum can be
guaranteed by a more rigid condition
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1 γ
γγ

γifN . (4.12)

which has the sense of a higher limit of Eq. (4.11). Here N is the number of
lasing modes and f

1
 is the strongest one.

3. Expression (4.6) resembles the series expansion of the polarization
in terms of field, which is widely used in nonlinear optics [3, 6, 319]. In
both cases the higher terms of the series correspond to multiphoton pro-
cesses. The difference is due to the choice of an unperturbed state. In the
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approach developed here the unperturbed inversion is taken as the satu-
rated inversion 0n . In the traditional expansion of the polarization, which
is used in nonlinear optics, the unperturbed state is assumed to be the state
of the medium in the absence of a radiation field, and saturation is not
distinguished from other nonlinear effects1. In this context it should be
remembered that the temporary local relation between the polarization and
the field is in the form of Eq. (4.6) (the ε-description according to the
terms adopted in [320]) is due to the specific features of media with

⊥<<γγ || . For such media the saturating field 2/1
||sat )(~ ⊥γγF  is much

less than ⊥γ~cohF , where the field interaction with the medium becomes
coherent and the susceptibility ceases to be an adequate characterization
of the medium in an unsteady state.

The consideration is restricted to the third-order terms of the polariza-
tion expansion, which correspond to the four-wave mixing in a laser me-
dium. Obviously, the rate Eqs. (4.10) take into account only the one-pho-
ton processes while Eqs. (4.9) include the four-photon processes that sat-
isfy the frequency matching condition νρµ ωωωω +=+k .

Unfortunately, the derivation of the equations does not give a clear an-
swer to the question when the rate-equation approach, which dominates in
the laser dynamics, is fully justified and when neglecting of the combina-
tion terms in Eqs. (4.9) is incorrect. A necessary condition for using the
rate equations is the smallness of the combination sum in Eqs. (4.9). If

1~/ >>∆ γ , then this sum enters the equations with a small parameter ∆/~γ .
These are satisfied in solid-state and other class B lasers. We do not know,
however, which degree of smallness of the parameter is sufficient for con-
fident discarding of the combination sum. For example, if we turn to dye
lasers, then 1/~ ≥∆γ  and the rate-equation approach becomes problem-
atic. The discussion of these problems will be continued later in this Chap-
ter. Here we only make the obvious assertion that intrinsically the rate-
equation approximation cannot be applied where the phase relations be-
tween modes are important.

4.1.2. Stationary Oscillation Spectrum of the Fabry-Perot Laser
First of all, we consider the simple case of a solid-state laser with plane-
parallel mirrors [321–323]. If d/dτ =0, Eqs. (4.10) become the following
set of equations:

( ) 12~
1

−∑+= lll mLAn ψ , (4.13a)

∫ += kkk vnL βψ 1d
~ 2

, (4.13b)

which define the time-independent solution. Here β
k
 are extra losses of

1Lamb’s theory is built on the same basis [315].
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k-th cavity mode normalized to the losses of the reference mode. Equa-
tions (4.13) can be solved without specifying the form of cavity
eigenfunctions only near the laser threshold. The right-hand side of Eq.
(4.13a) can be expanded in a series of ∑ lll mL 2~ψ  and, by retaining of the
linear term of expansion, Eq. (4.13b) is reduced to
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where ∫= vS lkkl d22ψψ .

More general results can be obtained for the axial modes. Substitution
of the longitudinal mode eigenfunctions )sin(2 ζπψ ll q=  into Eq. (4.13)
and taking the series expansion of
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This expression is not limited only to small-amplitude modes and it has

higher precision since a larger number of modes are involved. Introducing
Eq. (4.15) into (4.13), integrating over the longitudinal limits the medium
(from 1ζ  to 2ζ ) and taking into account that the number λ/2Lq =  is
very large, we obtain
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This equation indicated that the form of the laser spectrum is also de-
pendent on the length of the laser rod and its location inside the optical
cavity. Nonuniform filling of the cavity with the laser medium results in
discrimination against some modes even if the laser rod ends are antire-
flection coated.

The spectrum is most easily calculated if the cavity is completely and
uniformly filled with the laser medium. In this case 1,0 21 == ζζ ,

0])(2sin[ 2,1 =− ζπ kl qq  and Eq. (4.16) is transformed to
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For convenience, the last relation can be rewritten in the form of qua-

dratic equation with respect to ∑+ ll mL
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Assuming that all the cavity modes have the same losses, i.e., 0=kβ
and the frequency of one mode coincides with the line centre, we sum both
sides of Eq. (4.18) over all modes. Since 22
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In order to find 12 +j , the total number of modes excited in the steady

state at a given pumping level, one should demand in Eq. (4.17) that the
amplitudes of the modes with the indices )1( +±= jl  vanish:

      ∑
=

−=
+± ∆+

==+
jl

jl
jll

A
LAmL

2
las

)1( 1
~~

1 . (4.20)

First of all, it is useful to define the upper limit on the number of lasing
modes. For this we should substitute the expression (4.19) into (4.20) and
use the limit A→∞. The resultant equation
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is satisfied by the value maxj  bounded by 1
max1 −∆<<<< j , which is ap-

proximately
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The maximal admissible spectral width of the laser emission
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3/1
max

max
las )3(22 ∆=∆≈∆ j (4.22)

reduces as the intermode spacing decreases. Meanwhile, the total number
of modes grows. Thus, the relative radiation spectral width of a typical
laser with 310−=∆  does not exceed 1max

las 105.12 −×=∆ .
Knowing that 1max

las <<∆ , it is easy to find from Eq. (4.20) the depen-
dence of the number of lasing modes on parameter A:
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Strictly speaking, in deriving Eqs. (4.23) it was assumed that the mag-
nitude of j  is large. However, the dependence )(Aj  is such that these
formulas are useful at almost any A. Actually, if the number of modes is

2/maxj , then A=8/7, i.e., the pumping is close to threshold value.
Using Eq. (4.17) we also find the shape of radiation spectrum. If 1>>j

and 122 <<∆j , then the radiation intensity falls off quadratically with
detuning from the line center; thus using relation (4.23) we get a simple
formula
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The physical reasons for multimode emission are following: there is
nonumiform saturation of the active medium by each individual mode field
and the spatial structures of the intensities of the modes do not coincide.
The greater the number of modes involved in laser action, the more uni-
form the resultant inversion. Nevertheless, as the uniformity of the satu-
rated inversion grows, the conditions for excitation of each individual mode
are impaired, so that they are no longer satisfied for modes sufficiently
detuned from the line centre. This is the mechanism that limits the number
of lasing modes. As the intermode spacing decreases, the discrimination
between modes weakens, thus increasing the number of modes and, simul-
taneously, narrowing the mode spectrum.

By increasing the density of the cavity eigenfrequency spectrum it is
possible to narrow the laser radiation line. One way is to increase the cav-
ity length, but for practical purposes it seems more reasonable to use cavi-
ties with spherical mirrors since their transverse mode spectrum is nearly
degenerate provided the curvature of the mirrors is chosen appropriately
[98, 324].

All this refers to ideal cavities, the modes of which are assumed to be
purely standing waves. However, due to the inevitable losses on the reso-
nator boundaries the modes differ from standing waves (amplitudes of the
counter-running waves in a Fabry–Perot cavity are not necessarily equal
in real conditions). As a consequence, the induced inversion gratings are
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Fig. 4.1. Dependence of the distance between the nodes of longitudinal modes (standing
waves) on the coordinate along the cavity axis.

slightly smoothed out. This leads to the further narrowing of the laser emis-
sion spectrum [325]. Recall that the travelling wave saturates the laser
medium uniformly over the whole length. Therefore, multimode CW gen-
eration is not possible in the travelling wave laser. Similar conditions are
provided in a standing mode cavity if the laser rod is rapidly moved along
its axis, or if the positions of the nodes and crests of standing wave are
modulated with respect to a fixed rod, as mentioned in Chapter 1.

Another mechanism of smoothing out the longitudinal spatial inhomo-
geneity of the inversion is the diffusion of molecular excitation. In solid-
state lasers excitation can be transmitted from one active centre to another
close to it. In luminescent crystals and glasses this diffusion is usually too
slow to have noticeable effect on laser action [316]. However, the diffu-
sion of excitations can have a significant impact on laser action in modern
materials with higher density of dopant, and the mentioned in Section 1.2.3
LNP crystal is among them. The diffusion of carriers plays a significant
role in semiconductor lasers.

As mentioned above, the form of the radiation spectrum depends on the
size of the laser rod and its position inside the cavity. This can be ex-
plained in a simple way. The boundary conditions on the mirrors are the
same for all modes. As one moves away from the mirror, the spacing be-
tween the nodes of each pair of modes increases reaching a maximum equal
to λ/4 at some point and then decreases to zero etc. the number of points
along the length of the laser cavity with the maximum distance between
the nodes is equal to the difference of the axial mode indices.

This is illustrated in Fig. 4.1, which gives an idea about what form of
radiation spectrum can be realized in each particular case. A short laser
rod ( maxa /1/ qLL ∆<< ) near one mirror can only support single-mode laser
operation since the structure of all modes is nearly identical within the rod
volume and, therefore, the mode competition is the maximum. Evidently,
this result is easily obtained from (4.16). If a thin noninverted layer re-
mains on the centre of the cavity while the laser medium fills the whole
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cavity, then the modes with even index difference dominate [80].
We now consider the transverse mode spectrum of a laser with plane-

parallel cavity. Assume that a uniformly pumped medium fills the cavity
over the entire cross-section. We will use Eq. (4.10) and consider, for
simplicity’s sake, only the two-dimensional problem assuming the mirrors
to be infinitely long in one direction. Then the transverse part of the
eigenfunctions is adequately approximate by the sinusoids

])1(sin[2 ⊥+= ζπψ ql  [326] one can use for the calculation the method
developed above [327, 328]. In the presented formula )2/( bx=⊥ζ  is a
dimensionless coordinate in the cavity cross-section and b is the trans-
verse dimension of the mirror.

The condition under which the (q+1)-th transverse mode is involved in
the laser process is given by

  6/)14(1

)1(
2

2

−−
+

>
q

A
q

q

β
β

. (4.25)

The quantity β
q
 describes the additional part of the losses of the q -th

mode, which is conditioned by different values of the diffraction losses of
this mode and the referent one. For a plane-parallel cavity the additional
(discrimination) part of the losses obeys the dependence 2qq ββ =  and

2/3

21
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0 2|ln|16


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
=

π
λπβ L

RRb
, (4.26)

where R
1,2

 are the energy reflectivities of the mirrors. From (4.25) it fol-
lows that the transverse pattern on the laser output is formed by modes
with indexes between q=0 and q

max
 where

        3/1
0max 9.0 −= βq . (4.27)
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The directions of the maximum radiated intensity for the q-th mode
form the angles )4/( bqq λϑ ±=  with the cavity axis. Hence, the angle of
divergence of the output laser beam is given by

        )2/( bqλϑ =∆ , (4.28)

which is 5.2max =∆ϑ  for the parameter values chosen in the previous nu-
merical example. Relations (4.27), (4.28) imply that the limiting angle of
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divergence does not depend on the cavity aperture since 3~ −bβ . How-
ever the divergence does depend on the cavity length as

2/1~ −∆ Lϑ .

Using Eq. (4.27), we can exactly specify the conditions for stable single-
mode operation. One should put q

max
 = 1 in (4.27) and, substituting the

computed value of 0β  in (4.26), resolve the last equation with respect to
b. Making use of the same parameter values as these given above in the
numerical example, we find the aperture required for higher mode dis-
crimination: 5.12 ≤b  mm.

4.1.3. Uniqueness of the Stable Steady-State Solution
Let us turn to the problem of the uniqueness of the steady-state solution of
the multimode rate equations. There is an assertion belonging to the
Novosibirsk [115, 133, 329] that the set of rate equations

( )1d
~

d

d 2 −= ∫ vnLGm
m

kkk
k ψ

τ , (4.29a)

( )∑+−=
∂
∂

qqq mLnA
n ~

1 2ψ
τ , (4.29b)

has a globally stable steady-state solution with 0≠km , and this solution
is unique regardless of the number of lasing modes at least in the case
when the population difference does not change the sign inside the cavity.

This theorem is proved in the following way. Denoting the pure gain

∫ −= 1d
~ 2 vnLG kk

net
k ψ ,

we rewrite Eq. (4.29a) in the form

net
kk

k GGm
m =
τd

d
.

Correspondingly, for a steady state we have

( ) .
~

1

,0
2 AmLn
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qqq

net
kk

=+

=

∑ψ

For any deviation from the given stationary solution ( nnn −=δ ) the
laser equations can be written as follows

     ( )net
kkkk

k GvnLGm
m += ∫ d

~
d

d 2ψδ
τ , (4.30a)
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  ( )∑++−=
∂
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We can transform Eq. (4.30b) to a more convenient form
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Multiplying both sides of the last equality by nn /δ  and integrating
over the whole cavity volume, we obtain:
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We now rewrite Eq. (4.30a) in a different form:
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and then, after multiplying by qq mm / , we get
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This makes it possible to modify the previous equation:
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                                                                                                         (4.31)
We are free to add any arbitrary constant to the function under the de-

rivative sign and, therefore, replace qqq mmm ln−  by
)/ln( qqqqq mmmmm −− .  Now it can be asserted that an arbitrary devia-

tion from the steady-state value of the variables will decrease to zero in
time. This statement is based on the fact that the right-hand side of equal-
ity (4.31) is negative ( 0=net

qG ), and, consequently, the function under the
derivative sign must decrease monotonically until the vanishing of the left-
hand side stops the process. This will occur only when 0=nδ  and

qq mm = .
The fact that the result holds for an arbitrary deviation from the steady-

state solution is indicative of the global stability of the solution and the
unique way to choose it.

The proven theorem of global stability of the steady-state solution of
the rate equations puts an end to the myth that multimode operation is a
universal reason for the undamped spiking of solid-state lasers. The ab-
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sence of an instability shows that even this model is inadequate and makes
one seek for causes of undamped spiking of class B lasers outside the na-
ture of the interaction between the radiation field and laser medium.

It should be noted that there is generalization of the presented theorem
on the inhomogeneously broadened lasers. The inconstant laser medium
saturation does not change the situation, leading, generally speaking, to
only the dynamical deformation of the laser modes. And only the exist-
ence of domains with the opposite sign of population difference, which act
as a saturable absorber, can lead to the laser instability. Only by going
beyond the rate equations can we rapidly change the character of these
models. Such is the case for class C lasers considered in Chapter 11. Mean-
while, a weaker departure from the rate scheme may be sufficient some-
times. In particular, the undamped oscillations can be produced by the ef-
fect known as combination tone mode-mode coupling through secondary
beats.

4.2. Relaxation Oscillations as Low Frequency Normal Laser
Modes

There are many steady states for a multimode laser. It is shown in what
follows that only one of these states is stable, and it shows global stability.
Normal oscillations of the system, the number of which coincides with the
number of modes, are all damped i.e., they are exactly relaxation oscilla-
tions. The spectrum and some features of these relaxation oscillations were
first investigated in the early works [330–334]. The modern conception of
the low-frequency laser dynamics was formulated in Ref. [335–351].

4.2.1. The Model with Spatially Extended Laser Medium
As in the theory of a single-mode laser, we do not start with expanding the
inversion in a series of spatial harmonics. In order to avoid using too much
algebra, we assume that the number of lasing modes is very large and the
modes are plane standing waves [330]. There are many dangerous points
in such an approach, but it allows to make clear in a simple and direct way
some very interesting features of relaxation oscillations. Supposing that
the steady states are known (no other information on these states is re-
quired) we linearize the set of Eqs. (4.29). The linearized equations
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, (4.32a)
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are reduced by substitution { } { } )exp(,, λτδδδδ nmnm kk ′′=  to algebraic

ones, yielding a characteristic equation
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llkkk . (4.33)

This equation can be simplified by bearing in mind that in the case of
large number of modes:

(a) the laser medium is spatially uniform, such that we can assume
1=n ;

(b) the laser spectrum is rather narrow, such that 1
~ ≈kL ;

(c) the modes are orthogonal and, consequently

   ∫ +=
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0

,
22

2

1
1d kllk δζψψ . (4.34)

Thus, Eqs. (4.33) transform to a homogeneous linear set of equations
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Since the left-hand side is factored, the Eq. (4.36) can be decomposed

into
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, (4.37)

and

     0
2

1 =+− kmGp , (4.38)
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where )( Ap +−= λλ . From the structure of these equations it should be
readily apparent that p is a real positive quantity.

Consider first Eq. (4.37) assuming that the mode intensities are differ-
ent and decrease with an increase in mode index ( ...321 mmm ≥≥ ). The
boundaries of the roots can be defined graphically. Rewrite the Eq. (4.37)
in the form ∑ =1)( pf j , where 1)2/()( −−= jjj mGpmGpf , and repre-
sent the family of functions )( pf j  in Fig. 4.2. One can see that the largest
root has a lower limit imposed by the condition 2/11 mGp >  and each of
the remaining N–1 roots is bounded by 2/2/ 1+>> jjj mGpmG . The char-
acteristic roots satisfy the equation 0)( =++ jjj pAλλ  and, consequently,
have the form

jj p
AA −





±−=

2

22
λ .

Hence, under the condition G >> 1, the relaxation frequencies

jj p≈Ω . The largest one stands apart from the group. The damping
rates are the same for all modes, and they are equal to A/2.

If the intensities of any two modes converge, i.e., 1+→ jj mm , then
2/jj mGp → . The limiting cases 2/jj mGp =  are beyond the scope of

Eq. (4.37), but these are contained in Eq. (4.38). The power of Eq. (4.37)
is reduced in accordance with the multiplicity of the degeneracy with re-
spect to the mode intensities. If the system is completely degenerate, then
Eq. (4.37) has an unique root mGNp =1 . The main difference between
the relaxation oscillations is that those, which are characterized by the
roots of Eq. (4.38) are compensated and are not manifested in the total
radiation intensity. This is apparent from Eq. (4.35) which transforms to

Fig. 4.2. Graphical method of estimating the relaxation oscillation frequencies of a
multimode laser [330].
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Eq. (4.38) if ∑ =′ 0lmδ . The roots of Eq. (4.37) correspond to uncompen-

sated oscillations.
The highest frequency of relaxation oscillations is sometimes called

the main relaxation frequency, since it coincides with the sole frequency
present in the relaxation oscillations of a single-mode laser. This frequency
is characteristic of the in-phase amplitude oscillations of all modes. It is
impossible to obtain information about the structure of other relaxation
oscillations from the simplified approach. For this purpose, it is necessary
to find the eigenvectors of the system and this will be done in the next
section.

4.2.2. Approximation of the Spatial Inversion Gratings
The analysis of the model with spatial extended inversion has a very lim-
ited generality. Nevertheless, it leads to three important conclusions. First,
the absence of characteristic roots with positive real parts confirms the
stability of the steady-state solutions. Then, the number of types of relax-
ation oscillations cannot be more than the number of lasing modes be-
cause the order of the characteristic polynomial is equal to 2N. Finally, it
is found that all totality of relaxation oscillations is divided into two groups:
compensated oscillations and uncompensated ones. This corresponds to
experimental facts given in Section 1.2. But many questions remain open
and we need to return to the problem of relaxation oscillations using a less
rough model.

Let as hold the same scenario  as in Section 3.2 and present the inver-
sion as a set of periodic gratings the number of which coincides with the
number of lasing modes. Limiting the consideration by longitudinal modes,
for the amplitudes of the lowest order inversion gratings we have the fol-
lowing expressions:
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and neglecting the higher spatial harmonics Eqs. (4.29) transform into a
set of ordinary differential equations
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This set is valid under the condition that the laser medium uniformly
fills the whole cavity volume. The order of the system is equal to 2N+1,
where N is the number of lasing modes. The same is the order of the set of
equations linearized in the vicinity of nontrivial steady state. This means
that the number of pairs of complex-conjugate characteristic roots and,
consequently, the number of relaxation oscillations cannot be more than
N.

The further investigation of this problem consists in determination of
the eigenvalues and eigenvectors. It can be formulated as

mmnmn VVa δλδ =|||| ,

where |||| mna  is the matrix of the system coefficients linearized near the
steady state, nVδ  is the column of the eigenvector components
( jj nnm δδδ ,, 0 ). This problem can be solved only by using the numerical
calculations. However, it is possible to find approximate analytical ex-
pressions for the stationary values of the variables [167].

The structure of eigenvectors is shown in Fig. 4.3. The frequencies of
five lasing modes are situated symmetrically in respect to the gain line
centre. The mode losses are assumed to be equal. The number of relax-
ation oscillations is also equal to five and this is the maximum number.
The length of the arrow corresponds to the modulation depth of the mode
amplitude, while its orientation gives its relative phase.

The complete set of eigenvectors presented in Fig. 4.3 testifies to the
existence of two groups of relaxation oscillations. The unique representa-
tive of the group with in-phase oscillations is the relaxation oscillation
with the highest frequency, which is inherent in all class B laser models,
regardless of the type of the cavity and the number of lasing modes. The
rest N–1 relaxation oscillations belong to the antiphase dynamics.

The most evident but not the most convenient method of investigation
of the relaxation oscillations is the direct oscilloscope observation of the
transients. More useful is the alternative spectral approach. In 1965
McCumber [352]  demonstrated for a single-mode laser, taken as an ex-
ample,  that relaxation oscillations manifested themselves in the spectra of
low-frequency intensity fluctuations (power spectra) as the resonance peaks.
The origin of this phenomenon is simple enough: spontaneous emission
(quantum noise) and the parameter fluctuation systematically disturb the
steady state. The spectra of such processes are close to white noise, and
the laser response is more intense on the frequency of the normal mode
(which is relaxation oscillations).
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The resonance nature of power spectra is exhibited also in multimode
lasers, but the picture here is much more diverse, because one can investi-
gate the behaviour of the total intensity as well as the individual modes
(see Fig. 1.20). Note that the origin of in-phase and antiphase relaxation
oscillations is different. The first reflect the competition of pumping and
stimulated emission processes while the second ones correspond to the
mode competition. The antiphase oscillations are manifest mainly in the
power spectra of individual modes and they are practically absent in the
total intensity where the high-frequency peak corresponding to in-phase
oscillations of the mode amplitudes dominates.

A very interesting feature is the correspondence of each antiphase re-
laxation oscillations to the quite certain cavity mode. If the modes are
renumbered in the order of decreasing stationary intensities, and relax-
ation oscillations are renumbered in the order of decreasing  frequencies,
then in the power spectrum of the k-th mode a peak on the frequency Ω

k

dominates. This is clearly demonstrated in Fig. 1.20.

Fig. 4.3. Geometric representation of eigenvectors of the rate equation laser model with
five modes [350].
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The linkage of a given relaxation oscillation to a particular cavity mode
is confirmed by a laser with selective envelope feedback, which we will
discuss in Section 7.1. The optoelectronic feedback circuit serves for the
control of power supply of the diode laser, which is the pumping source
for the solid-state laser under consideration. The input signal of this cir-
cuit could be proportional to intensity of an individual mode or to deriva-
tive of this intensity. Experimental findings, which are in good agreement
with computational results, indicate that the positive feedback gives rise
to a corresponding resonance peak in all power spectra including the total
intensity. Changing the cavity mode results in changing the accentuated
relaxation oscillation.

Let us focus our attention also on the following circumstances. The
number of relaxation oscillations coincides with the number of lasing modes
only when the last number is relatively small. Starting with some value of
N

cr
 the increase in the number of lasing modes is accompanied by a  de-

crease (not increase!) of the number of relaxation oscillations. The reason
is that the frequencies of relaxation oscillations are going up slower than
the damping rates. This results in transformation of the complex charac-
teristic roots into the real ones.

4.2.3. Dependence of the Dynamical Features on the Distribution of
Unsaturated Gain Over the Perimeter of Laser Cavity
Calculations based on the equations like (4.40) are often not confirmed by
the experiment. One of the main reasons is symmetry breaking in real la-
sers. First of all, this breaking can result from the nonuniform distribution
of the unsaturated inversion over the cavity perimeter due to inequality of
the laser rod length and the cavity length or from the pumping attenuation
in the active element. As a result, in addition to the small-scale gratings
with the period λ

l 
/2, we have large-scale gratings with the period L/2r (r =

1, 2...) and the inversion is represented by the series
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which leads to the set of ordinary differential equations [349]:
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Here we used the decomposition of the pumping coefficient
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in which R = N and coefficients are

ζζπζ drAAr ∫=
1
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)2cos()( . (4.44)

Since we neglect all higher harmonics, the set (4.42) consists of N equa-
tions (a) for the mode intensities and the same number of equations (b) for
the amplitudes of the small-scale inversion gratings n

k
 plus one equation

(c) for the mean spatial value n
0
. The number of equations for amplitudes

of large-scale gratings is determined both by the gain profile (character-
ized by the number R) and the number of lasing modes.

The situation here is not simple since it is impossible to assume that N
is independent on R. When the small-signal gain profile is relatively smooth,
then the main factor of forming the large-scale gratings are the spatial
beats of lasing modes and the number of equations is equal to N–1. Thus,
the order of the set (4.42) is minimum 3N and this is much more than we
have in other models. Nevertheless, this does not affect the number of
relaxation oscillations, which is N as in all multimode models considered
above. The large-scale gratings increase the order of the model but do not
add any new complex characteristic roots.

The method of investigation of the model (4.42) is the same as was
used above for equations (4.40). Numerical simulation makes it possible
to find the steady-state solutions, eigenvalues and eigenvectors of the sys-
tem, and to observe its dependence on the control parameters such as pump-
ing and the cavity filling factor [350].

Consider the simplest case of the uniform pumping with 01 =ζ  and
LLa <  when everything is determined by the filling factor LLa /=ξ

ξπ
ξπ

r

r
AAr 2

)2sin(
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Stationary dependences of the total intensity and intensities of five
modes symmetrically situated around the centre of the gain line on the
pumping parameter are presented in Fig. 4.4 together with frequencies of
relaxation oscillations at 4.0=ξ . The mode losses are equal.

This case corresponds to the following distribution of the gain
( max~

/
~

LLg kk = ) among modes:

134,25,1 =<< ggg .

Note that in the interval 1.3 < A
0
 < 1.9 the intensity of the central mode,

which has maximal linear (unsaturated) gain, is less than intensities of
closest side modes. Such a result is possible only if 1<ξ . This effect was
experimentally observed in [167, 351]. The number of lasing modes also
depends on the pumping level. Ideal symmetry in the initial gain distribu-
tion provides the entrance of new modes in generation by pairs. Each such
event gives birth to an additional pair of relaxation oscillations, one of
which is compensated while the other is uncompensated. The frequencies

Fig. 4.4. Intensities (a) and frequencies (b) of relaxation oscillations as functions of the
pumping parameter: G = 2500;  ∆ = 0.132; ξ = 0.4 [350].

a

b
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of these oscillations are different.
The influence of the filling factor ξ on the intensities of laser modes

and frequencies of relaxation oscillations under the given pumping param-
eter is demonstrated in Fig. 4.5. In the interval 0.1 < ξ < 0.4 the central
mode is completely suppressed, and the number of lasing modes is equal
to four. The suppressed mode is reflected in the number and alternation of
relaxation frequencies.

The mentioned peculiarities of the behaviour of multimode lasers must
be taken into account when one compares the results of theoretical and
experimental investigations. The sensitivity of the dynamical characteris-
tics to the symmetry breaking can be used to reveal the fact of this break-
ing.

Let us summarise the features of the considered model of multimode
class B laser.

Fig. 4.5. Intensities (a) and frequencies (b) of relaxation oscillations as functions of the
cavity filling factor: G = 2500;  ∆ = 0.132; ξ = 0.4 [350].

1 mode

5 modes

4 modes
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1. There is only one stable solution among the steady-state solutions.
2. The time-dependent processes after deviation of the system from the

equilibrium are realized in the form of relaxation oscillations.
3. The in-phase oscillations of the mode intensities possess the maxi-

mal frequency, and the existence of such an oscillation does not depend on
the cavity geometry and the values of the control parameters.

4. The number of antiphase oscillations is N–1 if N is relatively small
and it decreases for very high numbers of modes.

5. Relaxation oscillations form a set of low-frequency laser eigenmodes,
which exists along with the optical modes.

6. There is some correspondence between the optical and relaxation
modes.

4.3. Time-Dependent Processes

4.3.1. Features of Spiking in Multimode Lasers
Hence, the spatial competition among modes does not explain the phe-
nomenon of undamped oscillations. Nevertheless, it has a noticeable ef-
fect on free running. A single-mode model suggests that the spike emis-
sion is preceded by a linear development stage, which starts when the thresh-
old is attained. The linear period is much longer than the spike duration
and depends appreciably on mode properties. The same is true for a multi-
mode laser. However, since the modes differ in loss and gain, they reach
the threshold at different moments of time. During the linear stage the
difference in mode intensities increases [353, 354]. Only those modes,
which reach threshold almost simultaneously, retain similar amplitudes
before the beginning of the nonlinear stage. This group of modes defines
the modal composition of the spike. A few special cases merit consider-
ation.

1. The group consists of a very large number of modes to ensure uni-
form saturation of the laser medium over the entire volume. This means
that the most favourable conditions will be retained for the same modes
and the spectral composition of the radiation will not change from spike to
spike. The case corresponds to the regular damped or undamped pulsa-
tions.

2. The mode discrimination is so strong that for a leading mode the
lasing conditions are restored after the spike is ended before the other modes
reach the laser threshold. As in the previous case the laser kinetics will be
regular, but a single-mode regime will take place.

3. The first single-mode spike has time to be emitted before the other
modes achieve a significant intensity. If the mode discrimination is not
very great, then a rival mode is ahead in a subsequent period of time, etc.
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the emission of each spike modifies the spatial distribution of active mol-
ecules and make it irregular. The spikes form a chaotic sequence in time,
which is gradually attenuated until the intensity becomes time-indepen-
dent.

To bring the theory up to the concrete results we should assign the ac-
tive molecules distribution, i.e., confine ourselves to the time interval pre-
ceding the spike. As an illustration, we consider the model with the uni-
form distribution of pumping in the laser medium. Using the assumption

of this model we find the gain nvn ξψ =∫ d2
. The filling factor ξ is the

same, accurate to λ/L, for all modes and is equal to L
a
/L. Since we intend

to investigate the formation of the first spike after pumping is switched
on, we should introduce a term taking into account the spontaneous emis-
sion. Thus, the initial set of equations will become:
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During the time before the first spike, the induced emission does not
influence the inversion. Therefore, the modes do not interact ad can be
treated as independent. The linear stage of lasing is started at the time the
threshold is reached (n=1) by the ‘reference’ mode with 0==∆ kk β . We
take this time as τ = 0. In the stage of linear development the inversion
variation is described by Eq. (4.14); substituting this into (4.45a) yields a
linear equation for m

k
. Its approximate solution, if the small quantities 2

k∆
and kβ  are retained only in the exponential terms, is expressed by

     ])1(exp[)()( 0 ττττ kk AGmm ∆−−= . (4.46)

The intensity of the reference mode, )(0 τm , is given by Eq. (3.52).

The quantity
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βτ (4.47)

represents the delay of the k-th mode with respect to the reference mode.
A plane-parallel cavity features a very weak dependence of the

eigenfrequencies on the transverse mode structure, so that it can be as-
sumed
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          2
0

22 )()/( qqLc kkmn −=∆ ⊥γπ . (4.48)

By contrast, the difference in losses is determined exclusively by the
mode structure and is independent of the axial index. For square mirrors
we have

     )( 22
0 nmkmn += ββ , (4.49)

where the coefficient β
0
 is given by Eq. (4.26). The delay between the

axial modes is, therefore,
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and the delay of the transverse mode with respect to the axial mode is
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In order to estimate the number of effectively excited modes, the delay
should be equated to τ

p 
/ 2, half of the spike duration, which is calculated

by (3.34). Using this equality we find the boundaries of the axial mode
spectrum and the limiting index of the transverse mode:
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The total number of excited axial modes is of the order of hundred, and
that of transverse modes is of the order of unity. This means that the spik-
ing is irregular in such a cavity.

The model of laser with a plane-parallel cavity and a uniformly pumped
rod has been chosen owing to the simplicity and clarity of the calculation
rather than due to its practical insignificance. In practice these conditions
are very seldom provided. In the most commonly used laser rods of cylin-
drical form achieving uniform inversion is impracticable. These active el-
ements are also heated nonuniformly by the pump and laser fields and
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acquire lens properties, thus changing the cavity configuration. The prob-
lem of the mode composition of the first spike, with all these factors taken
into account, was first considered in [355]. Solving this problem is facili-
tated by the following circumstances:

1. The structure of the light beam can be assumed to be identical in all
parallel cross-sections of the active element provided L

a 
/L<<1. Thus, in

the calculations the real laser rod can be replaced by an infinitely thin
sheet with finite gain.

2. Only the difference in gain and loss is important in the linearized
problems. Therefore, instead of the initial model we are free to consider
an equivalent laser model with uniform gain across the cavity and nonuni-
form loss.

3. The inversion density in the active element cross-section is described
approximately by a quadratic law [356]. Hence, the Gaussian distribution
law is valid for the gain and the problem reduces to considering a cavity
with the Gaussian diaphragm. The gain (loss) nonuniformity enhanced the
discrimination against transverse modes. The significance of this factor
depends of how rapidly the gain falls off from the cavity axis. Hence, the
effect should be greater in a small-diameter rod. Even the use of spherical
mirrors does not lead necessarily to multimode generation within the lim-
its of spike. Only near the concentric configuration, where the focal spot
is extremely small and the active element is at the cavity centre, the mode
discrimination is weak enough to allow many transverse modes to partici-
pate in laser action simultaneously. The estimates of the number of modes,
given in Refs. [355], have been confirmed experimentally.

Rigorously speaking, what has been said above refers only to the first
spike. After this spike is over, the inversion distribution changes, so that
one has to solve a complicated problem to find it. The form of the distribu-
tion, and therefore, the problem on the whole, increases in complexity
with each new spike. The problem is solvable only by numerical methods
[357].

4.3.2 Onset of Laser Spectrum
Besides the period of intermode beats and the period and time of damping
of relaxation oscillations, the multimode laser features one more time scale,
which characterizes the rate of onset of the radiation spectrum. For many
lasers the spectrum dynamics is the slowest process occurring in the laser.
This is due to the smallness of the frequency spacing between modes com-
pared to the gain linewidth, which makes the difference in discrimination
of the neighbouring axial modes negligible.

Since the laser time constants differ in magnitude, the onset of lasing
falls into few stages. After the threshold is exceeded, the total radiation
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intensity is established first. After this stage is completed, over a time of
order 1T  ( ||/1 γ ), the inversion can be considered a constant as well. There-
fore, at all the subsequent stages we can assume dn/dτ = 0 and use, instead
of Eq. (4.29), the equation
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Since we are dealing with longitudinal modes, we take the expansion
(4.15) and pass over from Eq. (4.53) to the simplest equation
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At the last stage of the transient and in the steady state the right-hand
side of Eq. (4.54) must be fully retained. However, at an intermediate stage
where the narrowing of the radiation spectrum mainly occurs, we can omit
the second term in the square brackets owing to its smallness and use the
equation (β

k
 = 0)
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The main difficulty in using this equation is that it relates the evolution
of the k-th mode to all other modes. However, taking the equations for two
modes, the k-th and n-th, we can eliminate the sum and obtain the equation
relating the intensities of only these two modes:
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Integrating this equation, we get
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Based on the assumption of a relatively narrow radiation spectrum, we
will neglect the difference of kL

~
 from nL

~
 in the power of the first term.

The index k is retained to designate the current mode and the index  n is
assigned to the reference (resonance) mode. Hence we assume 1

~ =nL  and
2~

1 kkL ∆≈− . Finally, Eq. (4.56) takes the form
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Thus, we can express the amplitudes of all modes through the reference
mode and write
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reducing the problem to the evolution of the reference mode [358].
We then can make use of the adiabatic slowness of the spectral evolu-

tion and take for the reference mode, instead of Eq. (4.55), its
quasistationary version
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or, in view of Eq. (4.58),
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We now replace the summation by integration using, instead of the dis-
crete quantities, the continuous ones
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Using this relation in Eq. (4.59) we obtain
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and substituting this into Eq. (4.57) we finally arrive at
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[359, 360]. Generalization to a laser with selective and time-dependent
mode losses is given in Ref. [359].

From Eq. (4.61) it is seen that at each moment of time the form of the
spectrum is nearly the Gaussian with halfwidth of halfheight:
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Eq. (4.61) also yields the time constant of the mode amplitude varia-
tion

         2

1

k
k G∆

=τ . (4.63)

According to the initial assumptions 1>>kτ  these considerations are
adequate only where 2/1

las )( −<<∆ Gτ .
At very large times, when form of the radiation spectrum is nearly time-

independent, i.e., at )/(1 2
las∆≥ Gτ  this approach is not appropriate, since

one cannot use Eq. (4.55). Thus, the time of onset of the radiation spec-
trum ranges

)/(11 2
las∆<<<< Gτ . (4.64)

For solid-state lasers with typical parameter values
4321

las
3 1010,1010,10 −=−=∆=∆ −−− G , the condition 12

las <<∆G  is barely
satisfied or not satisfied at all. Meanwhile, this condition is met for dye
lasers with the broader gain lines and the higher rates of population relax-
ation ( 1≤G , 32

las
6 1010,10 −− −≈∆≈∆ ).

4.3.3. Alternative Mechanisms of Laser Multistability
We have considered only one mechanism of multimode lasing – the spatial
competition of modes. Remaining within the framework of homogeneous
broadened active media we do not consider spectral mode competition.
However, we can consider the spontaneous emission as a mechanism of
multimode lasing alternative to spatially inhomogeneous saturation of la-
ser medium by separate modes [358, 361].

To analyze the case, we make use of the set of Eqs. (4.29) adding the
term, which takes into account the average contribution of spontaneous
emission to each mode, by modifying the first equation:
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The right-hand side of Eq. (4.65a) is written in a fashion like that used
in Eqs. (3.51) and (4.45), and the parameter ε

sp
 is defined by means of Eq.

(3.50). Assume a priori that the number of lasing modes is large and that
the inversion is uniformly saturated throughout the laser medium (one-
dimensional model in the plane wave approximation). Under these assump-
tions

nvnvnvn skkk === ∫∫ 222 dd ψψψ ,
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and

AvA k =s
2ψ ,

where 2
lψ  is the mean over the active element volume. Transform Eq.

(4.65b) by multiplying both parts by s
2vkψ  and integrating over the vol-

ume:
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lψ  is equal within s/ Lλ , then it should be reasonable to intro-

duce, instead of m , a new variable 2
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where 2
spsp kψεε =

It seems convenient to introduce a new small parameter ∆= /spπεη .
Then the time-independent version of the equation can be written (with
angular brackets omitted)

nLnLm kkk

~
)/()

~
1( πη∆=− , (4.67a)

      ( ) 1~
1

−∑+= llmLAn , (4.67b)

Since n  differs little from unity, from (4.67) we find
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Putting (4.68) into (4.67a) yields
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Replacing the summation (4.68) over modes by integration with respect
to frequency we find

∑ Ο= )(/ ηη Amk .
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Equating ∑ lm  to 1−A  we get an equality that implies
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and, therefore,
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Thus, we have obtained the Lorentzian form of the radiation spectrum
with halfwidth at halfheight
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Estimation of the number of excited modes using Eq. (4.72) yields
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if we assign 13
sp 10−=ε  and 510−=∆ , which corresponds to Rhodamine

dye laser. The number of modes will be much more than unity only pro-
vided 2101 −<<−A . The required high-precision proximity to the laser
threshold raises doubts that this multimode mechanism applies to such
lasers. However, this mechanism is important for semiconductor lasers
[362], since the parameter spε  is many orders higher than that for lasers of
other types owing to the small volume of the optical cavity.

The question arises: How can we explain the fact that the spectrum of a
CW jet-type laser contains hundreds of longitudinal modes? A possible
answer is that in spite of the stability of the total power, its distribution
over the spectrum does not reach a steady state. Simple estimation by for-
mula (4.72), which can conveniently be written as
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shows that at s10,s10,10 2-185 −− ===∆ ktκ  the number of mode N = 200.
As mentioned in Section 1.2.3, the lifetime of the individual mode of a
CW jet-type laser ranges from 10–2 – 10–3 s and the number of modes is a
few hundreds.

Thus, in the problem of multimode operation of a dye laser primary
emphasis is placed on processes that make the laser spectrum time-depen-
dent.
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4.4. Combination Tone Mode-Mode Coupling and Its Influence
on Laser Dynamics

When we proceeded to the rate equations in Section 4.1, we have to ne-
glect some terms in the semiclassical description of the system and, there-
fore, disregard some factors. One of them is the combination tone mode-
mode coupling (four-wave mixing). The effects due to the combination
interaction are exhibited when the mode frequencies are nearly but not
quite equally spaced. Strong interaction of the modes leads to what is termed
combination mode locking in which the random spectrum becomes rigor-
ously equidistant, and the influence of intermode beats on the stability of
stationary lasing is negligible since the beat frequencies are large with
relation to decay rate of inversion. A different situation arises when the
dispersion exceeds the nonlinearity and the emitted spectrum remains un-
equally spaced. If the secondary beats frequencies approach the values of
the relaxation frequencies, the influence of the nonlinear mode-mode cou-
pling should be taken into account. The effect predicted in [24,289] was
confirmed in subsequent papers [363–366].

In lasers with fast relaxing active media, which do not have relaxation
oscillations, the role of combination tone mode-mode coupling can be no-
ticeably. The combination tones do to the action of large number of modes
with unequally spaced frequencies ensure, like a complicated external
modulation, the complex fluctuations of individual modes [367, 368]. This
is a dynamic mechanism causing spectral time dependence, which is com-
monly present in multimode lasers.

4.4.1. Competition between Dispersion and Nonlinearity of the Laser
Medium
Limiting the consideration to only axial laser modes gives us the right to
use equations (S.10).

Taking the normalized time t||γτ =  and introducing the abbreviated
notation
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we rewrite the set of equations (S.10) in a somewhat different form
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The frequency matching condition lkkl +=+−+= νµµν ,  makes it
possible to order the modes, and rewrite Eq. (4.75) in a more compact
form

∑ +
∗
++

∗
+

∆−∆+
+++

=
νµ

µµ

µν

µµµµ

γ,

00comb

~/)(1

)(
~

)(
~

~
4

~

k

lklll
kk f

fff

i

nnFnnF
F

i
G .

(4.77)
Substituting )exp( kkk iFf ϕ=  into (4.76a) we isolate the phase equa-

tion
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Since four modes are combined and the expression (4.77) depends on
the mode combinations µµµ ϕϕϕϕ +−−=Φ ++ lklkkl  rather than individual
modes it should be reasonable to proceed from (4.78) to equation
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The function
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characterizes nonlinearity, and
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characterizes the dispersion of the system. Since κγ >>⊥ , the second term
on the right hand side of (4.81) is rather unimportant, so that the disper-
sion is conditioned mainly by the cavity spectral features
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The relationship between dispersion and nonlinearity can be different.
With strong dispersion one can ignore the nonlinear term; in this case the
unequal spacing of the cavity eigenfrequencies (nonequidistancy) leads to
about the same nonequidistancy of the output spectrum.

If nonlinearity dominates, a variety of dynamic regimes are possible. In
particular, the effect of dispersion can be completely overcome making
the radiation spectrum equidistant. This regime is often called mode lock-
ing, but it should be born in mind that equal mode spacing itself does not
mean the simple phase distribution law inherent in what is usually meant
by mode locking.

In order to find the mode-locking criterion in a broad sense we should
estimate Fnl and compare it to Fdisp. This estimation is difficult because the
modal phases are undefined. Assuming that the phase distribution is uni-
form, the problem is similar to the summation of N  randomly phased
oscillations, and for a laser medium with 1/,1/~/ || <<∆>>∆=∆ ⊥γωγωγ l
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The estimates can be simplified assuming that the mode intensities are
the same: NAFFk /)1(22 −== , and 10 ≈+ knn . Supposing that the main
contribution to the combination sum is given by terms with 1=l  we ob-
tain
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Going over to normalized nonequidistancy ωω µµ ∆=Ω′ /klkl  and to re-
peatedly met value )1(1 −=Ω AG  (the latter is relaxation frequency when

1>>G ) we can formulate (4.82) as
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The control parameter

 γ~/∆=∆
�

(4.84)

defines the inertial properties of the laser medium on the beat period time.
According to (4.83) the nonlinearity dominates in the case of small
nonequidistancy, which satisfies the inequality

      )/( 22
1 Nkl ∆Ω<Ω′

�

µ . (4.85)



159

Multimode Lasers with Frequency-Nondegenerate Modes
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4.4.2. Time-Dependent Regimes Due to Nonlinear Mode Interaction
Let us specify the conditions under which there is noticeable influence of
the combination tone mode-mode coupling on the time-dependent processes
in lasers. Beginning from the real form of equations (4.76a) we consider
the amplitude part of these equations:

   [ ]1)
~~

Im(2
2

1

d

d combbal ++−= kkk
k GGGF

F

τ .         (4.86)

The term comb~
kG  plays the role of a perturbation in the rate equation, and

we should first estimate its magnitude. To do this we rewrite Eq. (4.77)
assuming all 1

~ =kL  and that the inequalities

                     )||(1||~
|| ⊥<<−<<<<∆−∆<< γωωγγ µνµν          (4.87)

are satisfied. Since we are speaking about condensed media, -112 s10≥⊥γ ,
and ||γ  ranges from -13 s105 ⋅  for Nd:YAG laser to -18 s10  for dye lasers.
Frequency spacing between neighbouring longitudinal modes of about

-19 s10  corresponds to a cavity length of 100 cm. For solid-state lasers the
inequalities (4.87) are met for the transverse mode spectrum as well. Bear-
ing these facts in mind we can pass over (4.77) to the simpler expression
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Assuming that NAFnnn l /)1(,22 2
0 −≈≈++ +µµ , the amplitude of a

single term of the sum (4.88) is estimated as
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     )/()1(~
1 ∆−= NAγβ . (4.89)

A noticeable effect on the laser dynamics should be expected, first of
all, when the laser modes are not locked, i.e., 0≠Ω µkl . However, this means
that time enters Eq. (4.86) explicitly and the problem is beyond the scope
of autonomous theory. Therefore, running ahead, we will make use of the
results given in Chapter 6. Comparison of Eq. (4.86) with Eq. (6.18a) indi-
cates that the term comb~

Im2 kG  holds the same place in the laser equations as
the term responsible for the loss modulation. Thus we can use relations
(6.26) and (6.29) to estimate the efficiency of the combination tone mode-
mode coupling. There is only one question: What should be put in corre-
spondence with modulation frequency Ω and modulation depth β. The an-
swer to this question is ambiguous. Consider two particular cases.

1. The laser frequency deviations from equidistant spacing are mul-
tiples of a quantity Ω

sb
 and the spectrum of secondary beats is composed

of its harmonics. Making estimates, we can though cautiously, adopt (4.89)
for the lower harmonic amplitude.

2. Deviations from equidistant spacing are random, and the secondary
beat spectrum represents a white noise band with its centre at the frequency
Ω*. The combination tone amplitude is estimated following the rules of
summation of oscillations with random (drifting in this particular case)
phases; thus we have

           
N

A

∆
−= 1~γβ . (4.90)

The response of a solid-state laser to the presence of oscillating combi-
nation terms can be nonlinear if, according to Eqs. (6.26) and (4.90),
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∆
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G

ω
κβ

. (4.91)

From this relation it is seen that the role of the secondajry beats mecha-
nism in changing the mode intensity oscillations is more pronounced when
fewer modes participate in the laser action and when the modes are closer
to each other in frequency.

Having shown that irregular dynamic behaviour can appear in relatively
simple systems with a small (N>3) number of degrees of freedom, many
studies of the nonlinear dynamics focused on such systems. These include
some of the laser models considered above. However, complex nonperiodic
processes are also observed in multimode lasers, as mentioned in Section
1.2.3. The fluctuating intensities often resemble the kind of quantities in-
vestigated by the methods of statistical physics, so that one is tempted to
attribute their irregular behaviour to random factors. For example, the deep
undamped oscillations of intensity of some laser modes in a multimode
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laser have been ascribed to the presence of fluctuating noise sources re-
sulting from the spontaneous emission from the laser medium [369-371].
Such an explanation seems quite natural if rate equation models are used
and if nonlinear effects other than the unavoidable saturation of the laser
medium are disregarded. However, keeping in mind the mode coupling
due to the nonlinear scattering (including four-wave mixing) dynamical
interpretation of the random seeming time dependent processes in a multi-
mode laser could be sought. In contrast to random processes caused by
noise, we might attribute the irregularity to deterministic chaos. The true
nature of the observed time dependent behaviour of a multimode laser is
thus an important matter to investigate, in principle. Theoretical efforts to
solve this problem were undertaken in [363-368, 370, 372, 626], and the
experimental investigations of the spectral dynamics of dye lasers were
performed in [65, 372–374].

Numerical integrations of Eqs. (4.76) have found solutions that feature
chaotic behaviour. This is indicated not only by the nonperiodicity of the
calculated results in the absence of random forces but also by the inverse
dependence of the mode correlation time on the pumping rate [373]. This
dependence is expected from the dynamics alone by the fact that the influ-
ence of the nonlinear terms, and, therefore, the degree of irregularity they
produced, would increase with increasing strength of the average intensity
of radiation field.

In what follows we give the results of the numerical investigation of a
five-mode model of a travelling-wave dye laser. Although the choice of
the model is mainly due to its extreme simplicity, these results are of broader
interest than might be supposed.

First, the simplifications of Eqs. (4.76) are due to the fact that the laser
modes are co-propagating waves. Therefore, the longitudinal inhomoge-
neity of inversion is absent. Second, the high rate of relaxation of the in-
version allows n to be adiabatically eliminated putting dn

0
/dτ = 0 and

dn
k
/dτ = 0.
Figure 4.6 is a phase diagram that summarizes results of numerical so-

lution of Eqs. (4.76). The diagram is plotted in the control parameter plane
)~/,( γδ ∆Ω . The mode frequencies deviations from the equal spacing were

assumed to be quasiregular, so that µklΩ′  is a multiple of ωωδδ ∆∆=Ω /)( ,
which was taken as the measure of nonequidistancy.

The solid lines in the diagram confine the control parameter values,
which lead to unstable laser action. Upon entering the unstable domain by
increasing δΩ, the laser dynamics shows a sudden transition to the regime
of chaotic compensated oscillations of the amplitudes of individual modes.
Close to the inside of the right hand boundary of the unstable region is a
band of regular oscillations. With decreasing δΩ the transition from peri-
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odic oscillations to chaos shows elements both period doubling and
quasiperiodicity. Examples of regular and chaotic solutions are given in
Fig. 4.7. Outside the instability zone, CW single-mode solutions are estab-
lished after some transients. The result is quite natural since neither spec-
tral, nor spatial inhomogeinity of the laser medium is assumed in the model.
It should be noted, however, that for small deviations of mode positions
from the equidistant frequency spacing, when the nonlinearity dominates
the dispersion, the transient state is of the form of mode locking, which is
unable to sustain itself for a long time. These results support the idea that
nonstationary pulsations can be an effective mechanism of multimode las-
ing.

We should also mention that there are optical bistability and hysteresis
in the dynamics observed near the right hand boundary of the instability
zone. Depending on the initial conditions, the solution can be either CW
single-mode solution or undamped multimode pulsations.

Our attention is drawn to the very steep dependence on the instability
band in Fig. 4.6 on the relative intermode beat frequency. The instability
zone cannot remain this narrow for a large number of modes, since then a
wider range of primary intermode beats between the increasingly spaced
modes enter the dynamics. Obviously, this may be the reason for the insta-
bility of CW dye laser with hundreds of modes.

The efficiency of combination tone mode-mode coupling as the self-
modulation mechanism of the emitted spectrum of a dye laser can be esti-
mated in a fashion similar to that used above. The question arises: Which
quantity plays the role of the loss modulation depth? Combining the Eqs.
(4.89) and (4.90), we write

Fig. 4.6. Phase diagram of a five-mode model of travelling wave dye laser in the control
parameter plane )~/,( γδ ∆Ω . 1.0/;102~;5.1 ||

4 =⋅== − γκγA ; The hatching denotes the
instability domain [626].
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Fig. 4.7. Examples of numerical solutions to Eqs. (4.76) for 0/dd =τn  and N=5 in the
instability region shown in Fig. 4.6 [626] at A = 1.5, �γ  = 2·10–4;  κ/γ

||
 = 0.1;  / �γ   = 40;

δΩ = 2.5·10–5 (a) and  δΩ = 2.3 · 10–5 (b).

     α
µ

β
N

G

klΩ′
∆Ω=

Ω

2
1 )

~
/(

2 , (4.92)

where 15.0 ≤≤ α . The modulation depth of the mode will be extremely
large if 12/ >ΩβG , or, according to (4.92), if

         αδ
N2

2
1

∆
Ω<Ω � . (4.93)

For α  = 0.5 this coincides with the condition that the nonlinearity pre-
vails over the dispersion (4.85). The dash line in Fig. 4.6 reproduces the
dependence )/( 22

1
αδ N∆Ω=Ω

�
. The fact that it passes through the narrow

instability band indicates that the analogy to the model of laser with selec-
tive loss modulation is quite reasonable.

Such modulation behaviour was studied experimentally in [65, 372-
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374] for a jet-type dye laser. One fact suggesting the dynamic origin of the
time dependence of the lasing (Figs. 1.10 and 1.11) is the existence of
bifurcation points for the dependence of the laser characteristics on the
spectral power density. From Fig. 4.8 it is seen that sudden variations of
the mode correlation time are observed at definite values of the control
parameter. The fractal dimension of the attractor also changes abruptly at
the same points. A low and not integer-valued fractal dimension between
two and six is also the indication of the dynamical origin of the spectral
chaos.

In Refs. [373, 374] the attractor dimension as well as Kolmogorov’s
entropy was determined from experimental data using Grassberger and
Procachia’s method [375–377]. To realize their procedure, it is enough to
know the time dependence of only one of variables (the intensity of one
mode). Such an approach is quite understandable while the set of N first-
order differential equations can be in principle reduced to one equivalent
equation of the -th order. The coordinates in the phase space of such equa-
tion are the values of sought function  and its derivatives . The results of
processing the experimental data are presented in Fig. 4.9. Two jumps are
seen in the dependence of the fractal dimension  on laser output together
with tendency towards increased fractal dimension as the laser power is
increased.

These experimental facts merit comments. In Ref. [373], from which
Fig. 4.9 is taken, the spectral resolution of the apparatus is insufficient to
single out one mode. Therefore, the data, which are processed, represent
the time evolution of the total intensify of a group of a few tenth of modes
(35 modes in that particular case). Nevertheless, this yields the result pre-
dicted by the theory for the intensity of a single mode. Together with the

Fig. 4.8. Measured mode correlation time of a jet dye laser as a function of the spectral
density of laser output. Discontinued jumps are seen at 14.5 mW/A and 36 mW/A [373].

t
cor

, µs

p/∆λ, mW/Å



165

Multimode Lasers with Frequency-Nondegenerate Modes

low dimension of the attractor, this fact can be explained by dividing the
whole ensemble of the generated modes into a small number of groups,
within which the mode correlation is stronger than it is between the modes
belonging to different groups. Such a spectral packet, rather than a sepa-
rate mode, should be evidently identified as a degree of freedom in this
case. Selection of a single mode would not change the experimental re-
sults as a more recent experiment confirms [65].

The second comment concerns the role of quantum fluctuations in these
phenomena. Figures 4.8 and 4.9 do not show the pumping domain near the
laser threshold where it has been found that the attractor dimension rises
and the mode correlation time falls as pumping decrease (i.e., the tendency
opposite to that observed at high pumping level). This contradiction is
easily removed if we assume that the time dependence of the lasing near
threshold is dominated by quantum fluctuations where the importance of
spontaneous emission increases.

4.5. Inhomogeneously Broadened Solid-State Lasers

Although many dynamical properties of a laser are insensitive to the type
of the line broadening of the active medium, the spectral characteristics of
the laser output are affected by the inhomogeneous broadening. The sug-
gestion that all transition frequencies of all active molecules are exactly
the same, i.e., the spectral lines are homogeneously broadened for con-
densed matter, is not correct in all cases. For example, atoms may occupy
different positions in the crystal lattice or may be influenced by nonuni-
form electric field inside the amorphous hosts.

Fig. 4.9. Measured second-order attractor dimension of a multimode jet dye laser as a
function of the spectral density. The areas, in which the mode correlation time changed
abruptly, are marked on the horizontal axis [373]. Dash lines show the mean values of d

2
.

p/∆λ , mW/Å
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4.5.1. Mathematical Model
Summing of the contributions of identical molecules leads to the follow-
ing expression for the polarization of a homogeneously broadened me-
dium:

)( mnnmnmmnSnm N ddP ρρ += . (4.94)

In the case of inhomogeneous broadening one can write only part of the
polarization in this form and an additional summation must be taken over
the whole groups of particles that differ in transition frequency. Calcula-
tion of the polarization requires knowledge of the molecular distribution
function with respect to frequency, h(ω

0
), with a normalization condition

such as

1d)( 00 0 =∫
∞

ωωh .

The form of the expression for polarization depends on the form of
density matrix normalization. Assuming

)()()( 0022011 ωωρωρ h=+ , (4.95)

we have

     ∫
∞

+=
0 0d)( ωρρ mnnmnmmnSnm N ddP , (4.96)

while if

   1)()( 022011 =+ ωρωρ , (4.97)

we get

            ∫
∞

+=
0 00 )d()( ωωρρ hN mnnmnmmnSnm ddP . (4.98)

The inhomogeneous broadening amends twofold corrections in the la-
ser equations.

First, the medium inhomogeneity suggests summation of contributions
from all groups of atoms with different transition frequencies.

Second, it is important to take into account the process of spectral cross-
relaxation. The form of equations depends on what type of normalization
condition is taken: (4.95) or (4.97). Using Eq. (4.95) we get the following
set of equations for multimode laser that is generalization of Eq. (2.76):

     ∫∫=−−+ VdNiFi
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F
S dd4)]([
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, (4.99a)
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(4.99c)
Using the normalization condition (4.97) we replace the integral in right-

hand side of (4.99a) by ∫∫ Vh dd)( 00 ωωσψ λ  and replace the cross-relax-

ation term in (4.99b) by ∫−Γ 00 d)([ ωωDhD ].

The formal way to the rate equations is the same as was described in
Section 4.1. Using Eq. (4.3) we pass over new variables, then adiabati-
cally eliminate the Fourier components of atomic polarization and neglect
of all cross terms in obtained equations. In dimensionless form
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the rate equations for class B lasers are written when we use the dimen-
sionless variables similar to given by Eqs. (3.1):
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4.5.2. Steady-State Solution in the Spatially Uniform Field
Approximation: The Threshold for Laser Spectrum Splitting
When the inversion is spatially uniform over the entire volume of the ac-
tive medium, Eqs. (4.100) can be written in a simpler form:
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In the absence of lasing, the spectral density of the inversion follows
the distribution function

)~( 0ωAhn = . (4.103)

Substituting Eq. (4.103) into Eq. (4.102a) and demanding
0/d)~(d 00 >τωm , we find the self-excitation condition
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where 00
~ω  denotes the frequency of the gain line centre.

If the inhomogeneous broadening is much larger than the homogeneous
broadening, then the value )~( 00ωh  can be removed from the integral sign,
and the approximate self-excitation condition looks like

1)~( 00 >ωπAh . (4.105)

For an exact calculation of the integral we need to know the shape of
the distribution function. Here and elsewhere below we will use one of the
following two functions:

The Lorentzian function
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and the Gaussian function
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By adequately approximating the real shape of the inhomogeneous spec-
tral lines these functions can yield the results in a rather simple form.

The quantity q is the halfwidth of the distribution function normalized
to ⊥γ , and it is called the inhomogeneous broadening parameter. The total
width of an inhomogeneous broadened line is related to the elementary
homogeneous linewidth of a separate atom by q+1.

For the Lorentzian line (4.106) the self-excitation condition (4.105)
reduces to

           1)1( 1 >+ −qA , (4.108)

and for the Gaussian line (4.107) it reduces to

         1)]/2ln(1)[/2exp(ln)2ln( 22/11 >Φ−− qqAq π , (4.109)

where )(xΦ  is the probability integral. If the inhomogeneous broadening
is large, then, instead of the last two inequalities, we have
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The equations describing the time-independent lasing can be obtained
assuming d/dτ = 0 in Eq. (4.102):

                  01
)~~(1

~d

0
2

0

=−
−+∫

∞

ωω
ω

λ

n
, (4.111a)

          







−Γ−








−+

+− ∫∑
∞

0

02
0

0
~d

~
)~~(1

1)~( nnh
m

nAh
k

k ω
ωω

ω      (4.111b)

The unknown ∫ 0dωn  entering Eq. (4.111b) is found by integration of
both parts of this equation with respect to frequency:
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The case of single-mode lasing is simplest for analysis. Making use of
relation (4.112) we find from Eq. (4.111b) the frequency dependence of
the inversion
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Substituting the result into Eq. (4.111a) yields an equation defining the
radiation intensity

 ∫
∞

=−
+−++Γ

Γ−+Γ
0

2
000

0 01
])~~(1)[1

~
(

d
]

~
)1

~
([

m

h
mA

ωω
ω

. (4.114)

When the inhomogeneous broadening is large, so that we can assume
)~( 00ωhh = , Eq. (4.114) reduces to
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For brevity we introduce, in place of m , a quantity
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~

/(1 +Γ+= ms . (4.116)

Constraints on the inhomogeneous broadening need not be used in case of
the Lorentzian distribution function: Eq. (4.114) is transformed, irrespec-
tive of q, into
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Only one of two solutions is physically relevant, and it yields
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In the limiting cases of strong ( A>>Γ~ ) and weak ( 1
~ <<Γ ) cross-relax-

ation the expression for the steady-state intensity is simplified:
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The Eq. (4.119b) can be obtained directly from Eq. (4.114) if the cross-
relaxation is neglected from the very beginning. The relation (4.119a) means
that in the presence of strong cross-relaxation the laser medium behaves
as if it is were homogeneous broadened with the larger linewidth.

The single-frequency regime is stable when the saturated gain does not
reach the loss level at any of modal frequencies except for the line centre
frequency. Provided that
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multifrequency operation of the laser will be observed. Substituting for n
from Eq. (4.113) and assuming that the distribution function is Lorentzian,
we integrate and obtain an inequality
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Using Eq. (4.117), we can transform Eq. (4.120) to a simpler form
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The value 00
~~ ωω −=∆ kk  can satisfy this inequality only if
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The binomial in the square brackets has a positive root
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provided

     1>q . (4.123)

By definition (4.116), the quantity s cannot be less than unity. If the distribu-
tion function is the Gaussian, then in place of Eq. (4.123) we have the inequal-
ity 2ln>q  [378].

The first condition for multifrequency lasing (4.123) requires a defi-
nite inhomogeinity of the spectral line, while the second,

     1ss > , (4.124)

means that a finite excess of pump level above the laser threshold is neces-
sary. The parameter s

1
 that characterizes the critical pumping is large only

for q ≈ 1 and falls rapidly as q grows. This is seen from Eq. (4.122) and
illustrated by the table of values that satisfy this equation:

04.16.15.6|

100.21.1|

1s

q

Equating the s values, defined by Eqs. (4.122) and (4.117), we can find the
pumping parameter A at the multimode threshold. For q>>1 [98]
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Returning to inequality (4.121), we see that it indicates that if the con-
ditions (4.123) and (4.124) are satisfied then the single-frequency solution
is unstable with respect to mode excitation in a finite band near the line
centre. The function G

~  has the form shown in Fig. 4.10b. Figure 4.10b
differs from Fig. 4.10a, which corresponds to the case of stable single-
mode operation, in the character of the central extremum. Thus, at the
boundary of instability domain, not only 0~/)~~(

~
00 =∂=∂ ωωωG  but also

0~/)~~(
~ 2

00
2 =∂=∂ ωωωG . General information on the steady-state spectrum

is drawn from the properties of the function )~(
~ ωG  [379]. This function is

analytical and it can turn to zero in a finite interval at a finite number of
points. Hence, it is inferred that the spectrum is discrete. The laser spec-
trum consists of only one central frequency while the pumping less than
the critical value. Two frequencies will occur directly above the critical
value, and in the case of symmetric gain line they will be symmetric about
the line centre. Above the critical value the laser action at the central fre-
quency is terminated, since at the critical pumping 0~/)~~(

~ 2
00

2 =∂=∂ ωωωG
and above it the gain is a minimum rather than a maximum at the central
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frequency (Fig. 4.10c).
In the domain of two-frequency laser action the function )~(

~ ωG  remains
symmetric with respect to the line centre although it changes in form as
pumping further increase. Therefore, the second derivative is zero only at
point 00

~~ ωω = . This means that when the pumping reaches the next critical
value, the spectrum will multiply by producing a new line rather than split-
ting the existing lines as at the first stage. More specifically, the central
mode will again be excited and the distance between the sideband modes
will be of the order of halfwidth of the elementary luminescence band.
This problem is discussed in detail in the book [380]. The striped struc-
ture, originated from the spectral competition of modes in an
inhomogeneously broadened laser medium, is observed in the output spec-
trum of a neodimium glass laser (see Section 1.2.3). The evolution of the
spectrum, as pumping grows, which is followed in Fig. 1.16, is in qualita-
tive agreement with the theory. A similar dependence of the radiation spec-
trum structure on the pumping parameter is exhibited by dye lasers (Fig.
1.9). Obviously, the spectrum splitting for small excess pumping above
threshold, described in Refs. [59–61], indicates the same features of
inhomogeneously broadened laser media are inherent in dye solutions.

4.5.3. Connection between the Spatial Mode Structure and the
Spectral Structure of Laser Emission
The spatial nonuniformity of modes in the active medium leads to simulta-

Fig. 4.10.  Form of inhomogeneously
broadened gain line of the laser medium in
cases of (a) stable single-frequency, (b)
unstable single-frequency and (c) stable
double-frequency laser action.

a

b

c
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neous participation of many modes with close frequencies in the laser ac-
tion. For homogeneous broadening this was shown in Section 4.1. Inho-
mogeneous broadening does not remove the spatial competition of modes.
Thus, it can be expected that each component of the large-scale spectral
structure, mentioned in Section 4.5.2, will broaden to a band. If the width
of a separate band is comparable to the interband spacing, then the dis-
crete structure due to competition among the modes will not be apparent
in the experiment.

For a very rough estimate of the spectral width of the laser emission
due to spatial competition of the modes we ignore the spectral
inhomogeinity of the medium and make use of Eq. (4.23). We should re-
member that the pumping parameter definitions in Section 4.1 and here
are different and A should be replaced by A (q+1)–1 in Eq. (4.23). No other
changes are required if we assume inh/δωω∆=∆ , where inhδω  is the
halfwidth of the gain line at halfheight. Thus, in place of Eq. (4.23) we
have the expression

3/1

las 8

1
3 





 −−∆=∆

A

qA
. (4.126)

Substituting the pumping value (4.125), which corresponds to spectrum
splitting in the uniform field model, the lower limit on spectral width at
the critical point is

3/11
las )]

~
2(12[2 Γ+∆=∆ −∗ qq . (4.127)

This equation is valid for 1>>q  and 3~
q<<Γ . It makes no sense to con-

sider the case 3~
q>Γ , since the spectral splitting threshold will be much

higher than the attainable pumping parameter values.
The strips in the laser spectrum will, of course, overlap, if )2/(1las q>∆∗

and, therefore, if the intermode interval satisfies the condition

)
~

2(12

1

Γ+
=∆>∆ ∗

q . (4.128)

For estimates we assume that the cavity length exceeds 10 cm and, conse-
quently, the interval between the neighbouring longitudinal modes

10 110 s−∆ ≤ω . Assigning 13 1
inh 2·10 s−=δ ω  (the luminescence linewidth of

neodymium glass) we obtain 4105 −⋅<∆ . Substituting this in the left-hand
side of Eq. (4.128) we find that the neodymium glass spectrum can be
structureless for 100>q  ( q<<Γ~ ). This degree of inhomogeneous broad-
ening is achievable only for extreme cooling of the glass matrix [381].

When the intermode spacing does not satisfy the inequality (4.128) as,
for example, in a neodymium glass laser at room temperature, the radia-
tion spectrum must possess a structure. There are two options discussed
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below. Both options satisfy the time-independent laser equations. There-
fore, the problem reduces to analyzing them for stability. This problem
has not been yet solved and so it is impossible to specify more accurately
the conditions needed for this or that spectrum.

1. Condition (4.128) is not met. The spectrum consists of individual
bands spaced on the order of the halfwidth of the homogeneous part of the
line broadening.

2. Condition (4.128) is met. This is possible when not all adjacent modes
are generated. The spectrum consists of narrow lines and their spacing is
greater than the intermode spacing and less than the homogeneous part of
the line broadening.

Both possibilities satisfy the time-independent laser equations. There-
fore, the problem reduces to their stability analysis. This problem is not
solved and that is why we cannot indicate more definitely the condition
needed for realization of that or other spectrum. Intuitively, it can be ex-
pected that the first type ‘banded spectra’ should be observed with greater
probability in lasers with a spherical cavity, and the second type ‘line spec-
tra’ in lasers with a plane-parallel cavity. Any small-scale structure in the
spectrum is most likely caused by frequency-selected losses in the cavity1.
The latter type of structure of the time-independent spectra is most often
observed in practice.

The large number of modes and the rather small intermode frequency
spacing facilitate calculation of the total width of the line type spectrum
[382]. Owing to these features, the same approximate method of the space
integral calculation, described in Section 4.1.2, is applicable, and the sum-
mation over all modes is replaced by integration with respect to frequency.

The case without cross-relaxation is the simplest. The radiation spec-
trum coincides in shape with the gain line. The spectrum boundaries are
defined by the condition of balance between the unsaturated gain and loss.

In the presence of cross-relaxation, calculation of the steady-state spec-

tral width is formally complicated by the term ∫ ω~dn  in Eq. (4.100b).

Putting d/dτ = 0, integrating Eq. (4.100b) over the cavity volume and mak-
ing use of Eq. (4.100a) yields

∫∫ ∑−= kmAvn d~d 0ω . (4.129)

It is pertinent to recall that multimode lasing is accompanied by a spatially
uniform distribution of the inversion throughout the laser medium. Thus,
we can remove n  from the integral sign and reduce Eq. (4.129) to

1Intracavity laser spectroscopy is based on this phenomenon [383–386].
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∫ ∑−= kmAn 0
~dω .

By elimination of superfluous unknown we resolve Eq. (4.100b) with re-
spect to n :
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and substitute the resultant expression into Eq. (4.100a). The inequality

1
~~ 2 +Γ<<∑ kkk mL ψ

is equivalent to a small exceeds over threshold only in the case of weak
cross-relaxation. For strong cross-relaxation we can use 1)1

~
( −+Γ  as a small

parameter and make the expansion
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After the simple integration we arrive at the equality
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1 00
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, (4.130)

in which

∑−+ΓΓ−= kmAZ 1)1
~

(
~

.

The further transformations are based on the assumption of a large value
for the inhomogeneous broadening parameter, q>>1, and a broad radiation
spectrum, 1las >>∆ . These transformations lead to the equality

)~(

1

)1
~

(
1

k

k

h

m
Z

ωπ
π =








∆+Γ

− . (4.131)

Since 0=km  at the spectrum edge, from Eq. (4.131) we get the equation
)~( las00

1 ∆±=− ωπhZ  to find the spectral width of the laser emission. The
quantity Z can be found by summing both parts of Eq. (4.131) over all
excited modes. In the case of Lorentzian line shape the problem reduces to
the equation ( qY /las∆= )

 012
3

~
4 234 =




 −−




 −−Γ+
q

A
Y

q

A
YY

π . (4.132)

Its solutions for some values of Γ~  are given in Fig. 4.11. It is seen that the
spectral width of the laser emission diminishes as cross-relaxation grows.
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The function )(las A∆  is simple only in the case 1
~ >>Γ  at q<<∆ las :

  

3/1

las 1~
4

3













 −
Γ

=∆
q

A
q

π
. (4.133)

The curves calculated using Eq. (4.133) are shown by dash lines in Fig.
4.11. In the limit ∞→Γ~ , Eq. (4.133) is not valid, nor is the calculation as
a whole, since the condition 1las >>∆  is violated. For very large Γ~  the line
can be considered homogeneously broadened, so that Eq. (4.126) can be
used for estimation of the spectral width of the laser emission.

4.5.4. Transients in the Presence of Cross-Relaxation
By providing migration of excitations within the inhomogeneously broad-
ened line contour, the cross-relaxation mechanism tends to cancel any de-
viation in the spectral distribution of active centres from the equilibrium
one. A decrease of the number of active centres in some local part of the
spectrum due to induced emission by a narrow frequency band produces a
directed inflow of excitations exactly to this part of the spectrum. In this
sense, the cross-relaxation acts as supplementary source of pumping. Cor-
respondingly, the cross-relaxation influences any transients, leading to
faster arrival at a steady state. This mechanism is the most effective in the
case of narrow linewidth signal generation when an appreciate part of the
active medium is not directly involved in laser action, playing the role of
an energy reservoir. Below we consider a single-frequency time-depen-
dent regime.

We now linearize Eqs. (4.102) near the fixed point mn, , defined by
equalities (4.113) and (4.118), and introduce the variables

nnnmmm −=−= )~,(,)( 0ωτδτδ .

Fig. 4.11. Spectrum width of an inhomoge-
neously broadened laser versus pumping level
at different cross-relaxation rates Γ~ .
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Assuming solutions in the form λτλτ ωδδδδ ennemm )~(, 000 == , we arrive

at

          ∫
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mGm . (4.134a)
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(4.134b)
Integrating Eq. (4.134b) with respect to 0

~ω and making use of Eq. (4.134a)
we find

∫
∞

++−=
0 000 )1(/)(~d λλδωδ GGmn .

Thus, from Eq. (4.134b) we can define the relation between 0nδ  and 0mδ .
Substituting this relation into Eq. (4.134a) leads to the desired character-
istic equation
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(4.135)
Generally, it is clear that the damping of transient oscillations will be

accelerated with an increase in Γ~  only for relatively weak cross-relax-
ation. For very large Γ~ the laser medium behaves as homogeneously broad-
ened one thus obeying the laws stated in Section 3.2. It is reasonable to
consider the limiting cases separately.

1. Relatively weak cross-relaxation

        m,
~

|,| 11 Γ>>Ω θ . (4.136)

Using these inequalities we expand the integrand in a series of the small
quantity 1/1 Ω , and then find the approximate values of the frequency and
damping rate of small oscillations.

For the Lorentzian distribution function (4.106) and 1
~

,1 >>Γ>>q  the
approximate relations

  )2/()(2
1 qmAmG −≈Ω , (4.137)

2/
~

1 Γ−=θ , (4.138)

are valid. Here m  is defined by Eq. (4.118). So, the damping of transient
oscillations increases with increasing cross-relaxation when the latter is
not too large [387].
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Using Eqs. (4.137) and (4.138) we can write the inequalities (4.136) in
a more explicit form. By virtue of G> >1, a small excess over the laser
threshold is sufficient to satisfy the inequality m>>Ω 1 . The other two
inequalities of (4.136) coincide and can be reduced, using Eqs. (4.137)
and (4.118), to

      )(
2

1~ 2 qAG −<<Γ . (4.139)

2. Strong cross-relaxation

       m|,|,
~

11 θΩ>>Γ . (4.140)
In this case the small parameter for the series expansion of the integrand
in Eq. (4.135), is Γ~/1 . The characteristic equation (4.135) is reduced,
provided 1>>q , to the simple form

 0
~

2)](
~

2[
~

2 2 =Γ++Γ++Γ mGmqqmGq λλ .

Solving this quadratic equation we find

       )1( 12
1 −≈Ω −AqG , (4.141)

 q

mqmGq

Γ
+Γ+−= ~

4

)(
~

2
1θ . (4.142)

Unlike the case of weak cross-relaxation, the damping rate || 1θ  dimin-
ishes as Γ~  grows, so that as qA 2/||,

~
1 =∞→Γ θ . This means that the

medium behaves as if it were homogeneously broadened in this limit.
Substituting Eqs. (4.142) and (4.118) into Eq. (4.140) we see that the

three inequalities are satisfied when

)(
4

1~ 2 qAG −>>Γ . (4.143)

From the general dependence )
~

(1 Γθ  it is inferred that in the intermediate
domain, defined by 2/)(

~
4/)( 2 qAGqAG −<Γ<− , the damping of the re-

laxation oscillations is a maximum, and Γ≈ ~
|| 1θ .

4.6. Dynamical Instability of Steady State of a Multimode
Travelling-Wave Laser (Risken–Nummedal–Graham–Haken
Theory)

The conditions for laser instability with respect to perturbation of the os-
cillating mode itself found in  Section 3.4 are quite clear from the physical
point of view. First, the nonlinear distortion of the gain line must ensure
the mode splitting effect. Second, the sideband components, thus having
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the right to exist, must not be suppressed by the cavity; therefore, a wide
passband of the mode ( 1~ >κ ) is required. This last condition is no longer
necessary if we speak about the instability of single-mode lasing with re-
spect to the excitation of other modes. The mode, which is tuned to the
centre (the so-called resonant mode) ensures the laser self-excitation at
the carrier frequency while the nonresonant modes are used for the side-
band components. Formulated like this, the dynamical instability problem
was first considered by Risken and Nummedal [388, 389], Graham and
Haken [390] and discussed more recently by many authors [215, 289, 391-
397]. The consideration is not limited now by class C lasers.

The main features of the phenomenon should be apparent if we turn to
the one-dimensional model of a travelling-wave laser with uniformly dis-
tributed (over the cavity perimeter) loss and gain

    )(~ FP
FF −=

∂
∂+

∂
∂ κ

ζτ , (4.144a)

          PnF
P −=

∂
∂
τ , (4.144b)

    )(~ PFnA
n −−=

∂
∂ γ
τ . (4.144c)

These equations should be supplemented with cycling condition

   ),(),( lFF += ζτζτ . (4.145)

Besides the notation previously adopted we have introduced cz /⊥= γζ ,
a dimensionless coordinate along the cavity axis, and cLl /⊥= γ , a di-
mensionless cavity length. By using equations in the form of (4.144) we
mean that one mode is resonant.

Without the spatial variation of the variables, Eqs. (4.144) are identical
to Eq. (3.85); thus, the steady-state solution of (4.144) coincides with Eqs.
(3.86) and (3.87). There is no need to return to the laser self-excitation
condition which again has the form A > 1. However, the linear stability
analysis is rather specific in this model.

Assuming that small deviations of all variables from the steady state
122 −== APF bb , 1=bn  evolve as )exp( µζλτ i−  and linearizing Eqs.

(4.144) be these deviations we arrive at a characteristic equation

0~)1(~~2)]~1()~(~[)1~~( 23 =−−++−++−+++ AiAiAi γµκγλγµκγλµγκλ ,

(4.146)
where µ  is a real quantity and θλ +Ω= i , which corresponds to the Hopf
type of the assumed bifurcation at the second laser threshold. We then use
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the familiar method: only the term linear with respect to θ are related in
Eq. (4.146). Equation (4.146) is split into two real ones, which, after elimi-
nation of µ , reduce to

)~(~)1)(1~(~~2]~2)1~()1~2(~[

)1(~2]~)1(3[~
~

2224

224

κγγκγγγγκ
γγγκθ

++−++Ω−++++Ω
−+Ω−−−Ω−=

AAAA

AAA
.

(4.147)
The boundary between the domains of stable and unstable solutions of

Eqs. (4.144) can easily be found assuming θ = 0. The roots of the resultant
quadratic equation for the case  are given by

)1(8)1(9)1(3~/2 22 −−−±−=Ω AAAAγ . (4.148)

They are real if 9cr =≥ AA . Thus, the critical value of the pumping param-
eter for a multimode travelling-wave laser coincides with that obtained for
a single-mode laser under the most favourable conditions 3~,1~ =<< κγ .

The dependence expressed by Eq. (4.148) is given in Fig. 4.12. Its as-
ymptotes for A >> 1 are represented by the lines

AA =Ω=Ω γγ ~/,2~/ 2
min

2
max . (4.149)

The potential instability domain is shown hatched in Fig. 4.12. It should
be borne in mind, however, that the instability could develop only if one
frequency of the intermode beats enters this domain (the cycling condi-
tion). This additional (to A > A

cr
) requirement is a compensation for no

limit being imposed on the cavity Q-factor. Roughly speaking, it is neces-
sary that the normalized intermode frequency spacing ⊥=∆ γπ Lc /2  does
not exceed the frequency 2/1

max )~2( γA=Ω . Thus, a limit is placed on the
cavity perimeter:

2/1
||cr )(2 −

⊥=> AcLL γγπ . (4.150)

Numerical estimation for a Nd:YAG laser ( -112-14
|| s10,s10 == ⊥γγ )

for A = 10 yields -18
maxmax s104 ⋅=Ω= ⊥γω  and L

cr 
≈

 
6 m. In principle, the

fibre optical delay permits design of laser cavities with a perimeter of a
few hundreds of meters [86], but these are rare in practice. So, this type of
instability is not an urgent problem for solid-state laser. However, it is
easy to reach these values in is retained. If we take into account the exist-
ing spatial nonuniformity, caused, for example, by the loss localization on
the mirrors, then the second threshold is still higher [396, 397].

Specific features of a multimode laser are essential to pulsations above
the second threshold. Since the spectrum of allowed pulsation frequencies
is rigidly subject to the discrete spectrum of the cavity modes, the tran-
sient process from amplitude modulation to beats, shown in Fig. 3.6, is
highly problematic. Nevertheless, the numerical investigation of Eqs.
(4.144) shows that higher-order bifurcations can occur. The pulse train
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envelope in the laser instability domain can be both regular and chaotic
[391, 395].

There is no strong experimental confirmation of the Risken–Nummedal-
Graham–Haken theory until now. Information about observation of un-
damped pulsations in an erbium fibre laser is reported in Ref. [398]. The
period of observed pulsations is equal to the round trip time of the cavity.
According to all parameters this regime corresponds to the theory predic-
tions. Only the instability threshold is evidently lower than theoretically
predicted. This fact forced us to think about the modification of the model
[399] or about the presence of any casual nonlinearity in the experiment,
for example, a weak saturable absorption. But one must bear in mind that
the gain line can be slightly inhomogeneously broadened.

Fig. 4.12. Phase diagram of a travelling wave
multimode laser in the control parameter
plane (A, Ω) plotted according to Eq. (4.148).
The hatching denotes the instability domain.
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Chapter 5

Multimode Lasers with Quasi-
Frequency-Degenerate Modes
From a physical point of view, the principal difference between large and
small intermode frequency spacings is determined by their relation to the
frequency of dynamical processes in lasers.

In Chapter 4 we have discussed models, in which

cδωω >>∆
The intermode beat frequencies suggested frequencies that are much greater
than relaxation oscillation frequencies in the class B lasers and are situ-
ated essentially higher than all the frequencies characteristic for the spec-
tral dynamics of dye lasers. Therefore, we did not take into account the
mode beats in the considered rate equation models. Combination tone mode-
mode couplings, which occur via oscillating inversion gratings, also do
not require the presence of amplitudes of these gratings among the vari-
ables.

Such an approach is incorrect if the modes are close in frequencies. In
this case the amplitudes of oscillating inversion gratings are included in
the variable collection, making the system’s dimension higher and chang-
ing its physical properties.

In contrast to the simple rate equation models, an important role is played
not only by the amplitudes but also by phases of the physical quantities
that characterize the state of the field and the medium. That is way we use
the term ‘model with the phase-sensitive interaction’.
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The phase-sensitive interaction takes place between a pair of levels and
it is reasonable to study this phenomenon considering the two-mode mod-
els. It is important to indicate the type of the resonator. In Fabry-Perot
cavities the modes are standing waves and the phase-sensitive interaction
occurs here in addition to a more simple interaction, which is realized
through saturation and cross-saturation of the active medium. Models of
these lasers smoothly, without bifurcations, transform to rate equations,
when a control parameter, for example, the intermode frequency spacing,
is changing. In ring lasers, where modes are travelling waves, the phase-
sensitive interaction is the main type of interaction, and a corresponding
model is never reduced to rate equations.

5.1 Two-Mode Class B Laser with a Fabry-Perot Resonator

First papers devoted to the two-mode laser theory date back to the middle
1960-s [400–405]. However, we shall use an approach developed in more
recent works [406, 407].

5.1.1 Equations of Class B Two-Mode Laser
Let us start with Eqs. (S.12), slightly generalizing them:
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The first two equations require an additional comment. On the one hand,
the asymmetry in these equations is due to the inequality of the mode losses
presented by β, and, on the other hand, due to the fact that the reference
frequency is chosen equal to the eigenfrequency of the first mode, so that
∆

c2 
coincides with the intermode beat frequency D.
Rigorously speaking, equations (S.12) are obtained under the assump-

tion of two-level approximation for the laser medium. Hence
LL
~

);1/(1
~

0
2
0 ∆−=′′∆+==′ αα . However, the two-level approximation in the

simplest form is not always defensible. Even doped dielectrics often do
not satisfy the requirement 0=′′α  at the centre of the gain line because the
polarizabilities of atoms at different energy levels do not coincide [408-
410]. However, some qualitative features of the dynamics of semiconduc-
tor lasers can be described using such approach with only little transfor-
mation and supplementation of Eqs. (5.1). First of all, it is necessary to
take into account the diffusion of carriers, the velocity of which can be
considerable in semiconductors. In the limiting case the diffusion leads to
complete smoothing of the small-scale gratings with a step of the order of
the wavelength, +

1221 ,, nnn , but almost does not affect the large-scale grat-
ings. Such a situation was considered in [406]. In paper [407] the case of
arbitrary diffusion rate was considered, which is interesting from the me-
thodical point of view, since the diffusion rate is the only control param-
eter that permits to affect the grating amplitudes.

Taking the spatial diffusion into account reduces to adding a term
nD 2∇−  in the material equations. There are new terms n

1
d

dif
, n

2
d

dif
, n+

12
d

dif

It is possible to use the unified diffusion coefficient )/(1
dif λπγ −= Dd  be-

cause the wavelengths of interacting modes are nearly the same.
The necessity of one more correction of the equations, as applied to

semiconductor lasers, follows from the fact that the form of the gain line is
far from being Lorentzian. This does not influence the value of α ′ , which
is close to unity, since the laser frequencies are in the immediate proxim-
ity from the gain line maximum. Meanwhile, unlike the two-level case, the
value of α′′  can strongly differ from the intermode beat frequency, reach-
ing a few units [411, 412]. Since α′′  defines the degree of the influence of
amplitude fluctuations on frequency fluctuations, this parameter is gener-
ally referred to as line width enhancement factor (Henry’s α-factor) of a
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semiconductor laser. But there is one more term expressing the fact of
dependence of the oscillation frequency in a nonlinear system on its am-
plitude, and this term is ‘nonisochronity’.

In view of all these comments, Eqs. (5.1) can be rewritten in a more

general form ( αα ′′≡ ):
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5.1.2 Steady-State Solutions and Relaxation Oscillations
The considered two-mode model with the phase-sensitive interaction has
two single-mode steady-state solutions

                          0,
2

1
exp 2

2/1
11 =





 −= fiGmf ατ ,

                0,0,1, 1221110 ==−+=−= nnAmnmAn ,
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     0,)1)(1(,0,)1( 1222120 =−++==+−= nAmnnmAn ββ ,

(5.4)
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1 2
difdif

2
dif2 ddAAdAm ++++++−=

where )1/(
~ β+= AA . In the case 0dif =d  the expression for the steady-

state intensity in Eqs. (5.3) coincide with Eq. (3.71).
The presence of oscillating factors in the expressions for the mode fields

in Eqs. (5.3) and (5.4) only means that the laser frequencies do not coin-
cide with the reference frequency, which, we remind, was chosen equal to
the cavity eigenfrequencies. It is also apparent that the transition from the
first to the second mode is accompanied by a change in laser frequency to
a value close to the intermode frequency spacing.

Linearization of Eqs. (5.2) near any of the single-mode steady-state
solutions leads to a characteristic equation of the form

0)()( 43
2 =λλλ PP , (5.5)

where )(λjP  is a polynomial of power j. The cubic polynomial )(3 λP  has one
real root 1λ  and a pair of complex-conjugate roots 113,2 Ω±= iθλ . It should be
not surprising that the latter roots correspond to relaxation oscillations, which
are available in the single-mode model too, since the same cubic characteristic
polynomial can be obtained by completely ignoring the presence of the second
mode.

The quartic polynomial )(4 λP  has a pair of complex-conjugate roots

AA iΩ±=θλ 5,4 , whereas the remaining two roots, 6λ  and 7λ , are real.
Thus, the second type of relaxation oscillations exists, which exhibits no-
ticeably different properties compared to the first type. This is clearly dem-
onstrated in Figs. 5.1 and 5.2, which show the dependencies of the charac-
teristic roots on pumping for different values of the diffusion coefficient.
The dependences 1~1 −Ω A  and A~1θ  prove to be nearly the same as
those met above, as was to be expected. On the contrary, the behaviour of

AΩ  and Aθ  strongly depends on near which of the steady-state solutions
the action takes place and on the value of the diffusion coefficient d

dif
.

An important feature of the roots λ
4,5

 is that Reλ
4,5

 reverses its sign for
some bifurcation value (HB) of the control parameter. This corresponds to
a Hopf bifurcation accompanied by the loss of stability of the single-mode
solution and transition to the two-mode solution. The real root λ

6
 can re-

verse its sign too (a corresponding point is marked as BP) and this also
affects the stability of the single-mode solution. Multistability and insta-
bility of the steady states characterize the model with phase-sensitive in-
teraction and these features are absent in the simplest rate equation model.

Figure 5.3 shows the phase diagram of a two-mode laser in the plane of
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control parameters (A, d
dif

). Two zones of stable steady-state solutions (SM
1

and SM
2
) and the domains of two-mode solutions (TM and TM

S
) are seen.

The existence of stable solution for mode with higher losses (SM
2
) is due

to phase-sensitive interaction between the modes, mainly through a large-
scale grating −

12n . This solution is absent in ordinary rate equation models.
This solution appears for d

dif 
> d

1
 when the diffusion results in an appre-

ciable smoothing of small-scale gratings. For smaller d
dif

 the competition
between modes is largely weakened, so that two-mode operation domi-
nates here. The boundary value d

dif 
= d

1
 is not a bifurcation one, and it

separates a domain of a relatively slow diffusion, in which the influence of
small-scale gratings is determining, from a domain of high diffusion in
which the mode-mode coupling through a large-scale structure is most sig-
nificant. It should be noted that the value d

1
 is varied within small limits

when the control parameters ∆
c
 and α  are changed.

Fig. 5.1. Relaxation oscillation frequencies (a,c), their decrements and the real roots (b,d)
of the characteristic equation (5.5) corresponding to the steady-state solution (5.3) as a
function of the pumping level: 0;05.0;20;0.2;0.4 c ====∆= dG βα  (a,b), 50 (c,d).
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Zone TM
S
 in Fig. 5.3a corresponds to the steady-state two-mode solu-

tion with prevalence of the mode with highest losses, whereas this one,
designated TM, is not steady-state. The depth of the self-modulation of
mode amplitudes in this regime can be judged from Fig. 5.4. These dia-
grams are plotted on the basis of the numerical solutions of Eqs. (5.2),
obtained for different values of the control parameters. In the particular
case displayed in Fig. 5.4 the pumping parameter A = 3.0. In Fig. 5.3 this
corresponds to a domain located noticeable higher than the boundary BP,
and m

2
 > m

1
, i.e., the mode with higher losses dominates here. Attention is

drawn to the very sharp change of the modulation depth when the diffu-
sion coefficient passes through the value d

1
.

The self-modulation frequency is smaller than intermode frequency spac-
ing but approaches it with an increase in ∆

c
. This fact allows to neglect the

phase-sensitive mode coupling and use the rate-equation approximation
for ∆

c 
> max (1, α). The time-dependent processes occurring in this case

are represented by two relaxation oscillations: in-phase and antiphase os-
cillations of mode intensities, which have been considered in Chapter 4.

Let us summarize the properties of the model of two-mode laser with

Fig. 5.2. The same as in Fig. 5.1 but for the steady-state solution (5.4) [407].
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Fig. 5.3. Phase diagram for the laser model described by Eqs. (5.2) in the plane of control
parameters (A, d

dif
): 05.0;20;0.2;0.4 c ===∆= βα G  (a), 0.09 (b).

Fig. 5.4. Dependence of the mode intensities and the total intensity (a) and the self-
modulation depth (b) on the diffusion coefficient: A=3.0; α  = 4.0;  ∆

c
 = 2.0; G = 20;

β = 0.05 [407].
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phase-sensitive interaction.
1. Generally speaking, the system is bistable: there are domains of the

parameter values where two steady-state solutions are stable.
2. The steady states can be unstable.
3. The number of relaxation oscillations can exceed the number of

modes.

5.2 Bidirectional Class B Laser

The specific feature of a ring laser from the dynamical point of view is
conditioned by the fact that its modes are counter-running travelling waves.
As a consequence there are no inversion gratings corresponding to indi-
vidual modes in the presence of phase-sensitive interaction on the only
one grating induced in the active medium by the joint action of modes.

The ring laser is a very attractive object of the nonlinear dynamics.
Even the single-mode class A laser has the dimension equal to three, and
that is enough for the complex dynamic behaviour. Increasing twice in
class B lasers, the dimension, nevertheless, remains reasonably low for the
modern computers. The complex regimes can be achieved using the ordi-
nary combinations of parameters.

In the applied aspect at the first place stays the sensitivity of a ring
laser to the rotation or, in more general sense, to the phase nonreciprocity
of the cavity. As a rotation velocity sensor the preference have the atomic
class A gas lasers. The gyroscopic potentialities of the class B ring laser it
is hard to estimate at its true worth. What is nontrivial that information
about phase nonreciprocity contains directly in the dynamic behaviour of
the laser, and this is propaganda in favour of the inverse problems of laser
dynamics.

The list of references at the subject given below though it is vast cannot
pretend to be exhaustive. To fill this gap we can recommend the overview
paper [413] authors of which have done much in the physics of the bidi-
rectional ring lasers.

5.2.1 The Model of Single-Frequency Class B Ring Laser
We now use Eqs. (2.63) as the material equations. Assuming the field in
the form (2.23) we approximate the material variables by using the series

irkz
r

irkz
r eDDe ∑∑ == ,σσ .

Consideration of the elements D
r
 with r ≠ 0 is dictated by the necessity of

taking into account the counter-running wave interaction on a self-induced
inversion grating. It is found, however, that the use of the harmonics D

+2
 is

sufficient for this purpose, so the description of the inversion grating more
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thoroughly adds little to the dynamical characteristics of the laser system
[414–416].

Termination of the series after the term D
r
 confines the polarization

expansion to the terms 3±σ . Assuming 0/ =∂∂ τσ  we come from Eq. (2.63)
to
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Since the inversion is represented by slow variables, we find for
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The only thing left is to substitute the components ±σ  from Eq. (5.6) into
Eqs. (5.7) and (2.38) bearing in mind that 11 ±± = σdNP S  we obtain a com-
plete set of equations
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Making use of the dimensionless notations introduced above and add-
ing
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we can write these equations in the form
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5.2.2 Steady States in the Absence of Backscattering and Their
Stability
At first we should ascertain the role of the Bragg gratings in the popula-
tion inversion represented in Eqs. (5.9) by the variable . Omitting the lin-
ear coupling between waves and the nonreciprocity of the cavity we re-
duce Eqs. (5.9) to
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This particular case is thoroughly investigated in [417, 418]. Besides the
trivial steady state, the ring laser model possesses three other fixed points
in the absence of linear coupling of waves. In terms of Eqs. (5.9) they are
expressed by
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In Refs. [419–421] it is shown that the solution correspond to the standing
wave mode is unstable. This is a characteristic feature of lasers with active
media, which are not Doppler broadened.

Linearizing Eqs. (5.9) near each of the travelling wave steady states it
is easy to obtain a characteristic equation, which can be decomposed into
two parts. The first,

             0)1
~

(
~2 =−=+ LAGLA λλ , (5.12)

corresponds to introducing a perturbation into the excited wave (say, f
+
)

and into the uniform component of inversion. Owing to the condition
G >>1, the roots of Eq. (5.12) have the form
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The frequency of relaxation oscillations exactly coincides with that for a
single-mode travelling wave laser given by Eq. (3.20).

The reaction of the system to perturbation of the other pair of variables,
f

–
 and n

2
, which are equal to zero in the steady state being investigated, is

indicated by the other part of the characteristic equation,

0)1
~

)(1(
2

1~
0

2 =−∆+++ LAiGLA λλ . (5.14)

This defines the additional relaxation oscillations frequencies

2/2/)1
~

(Im 1, Ω=−==Ω LAGBA λ , (5.15)

characteristic of a bidirectional laser, which are doubly degenerate if the
phase nonreciprocity is absent. They are the phase-sensitive relaxation
oscillations, which have a decisive effect on the dynamic behaviour of this
laser.

Under the condition Re λ > 0, which is equivalent to
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(5.16)

the oscillations of frequency 2/1Ω  are undamped. If the pumping in ex-
cess of threshold, LA

~ , is assumed to be the control parameter, then Eq.
(5.16) yields the critical detuning in explicit form. If we use the pumping
parameter A

1
, then Eq. (5.16) should be considered as an equation to solve

with respect to A, from which we find
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From this equation we get the necessary condition for instability G/82
cr >∆

and see the asymptotic behaviour G/82
cr >∆ , namely 2/)1( 2

cr
2
cr1 ∆+∆= GA

and 2
cr2 1 ∆+=A  (the laser self-excitation threshold). The unstable domain

in Fig. 5.5 lies between two branches of the curve (5.17).
The instability of the unidirectional steady-state solution with laser

detuning was predicted in work [421]. The resulting time-dependent pro-
cesses were calculated in [417, 422, 423]. Examples are given in Fig. 5.6.
For small ∆

0
, which nevertheless exceeds the critical value, the beam di-

rections alternate with a characteristic time interval between switchings
that greatly exceeds the period of relaxation oscillations. This interval is
subject to considerable irregular fluctuations.

It is important to note that oscillations at the relaxation frequencies are
involved in the dynamics and their presence becomes increasingly notice-
able as the detuning increases. First, the onset of the self-modulation re-
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gime of the second kind, as it is called in Ref. [422], is due to the sign
reversal of the damping rate of phase-sensitive relaxation oscillations (a
Hopf bifurcation). Second, the coexistence of a several oscillatory pro-
cesses with incommensurate frequencies is a prerequisite for determinis-
tic chaos. The switching frequency grows with detuning, and the irregu-
larity is enhanced as the switching frequency approaches Ω

1
.

Experimental investigation of the time-dependent behaviour of a CO
2

ring laser with cavity detuning is reported in [155,156]. The results are
reduced to the borderlines that are marked between the domains with dif-
ferent time-dependent processes in the parameter plane (discharge cur-
rent, gas pressure), i.e., (pumping, atomic system relaxation rate). Besides
the theoretically predicted self-modulation of the second kind, a regime of
regular synchronous pulsations is revealed. Between these domains one
can see a zone with pronounced irregular dynamics. According to [413]
the necessary condition for existing the regime of regular synchronous
pulsations is existence of asymmetric linear coupling of counter-running
waves.

5.2.3 Influence of Fine Structure of the Gain Line on the Stability of
the Steady States
The primary cause of the instability, which leads to self-modulation of the
second kind, is the Bragg scattering of the waves from the wave-induced
inversion grating. Dynamically, an important role is played by the phase
shift of the scattered component. That is why the asymmetry of the gain
line with respect to laser frequency is a necessary condition for the insta-
bility. In other words, the real part of the atomic system susceptibility at

Fig. 5.5. Phase diagram of a bidirectional class B ring laser in the parameter
plane ( AG ,2

0∆ ).
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the laser frequency must be nonvanishing. In a homogeneously broadened
laser this condition is ensured by controlling detuning of the cavity mode
from the atomic line centre. This effect is easily achieved in low-pressure
gas lasers where the gain line is narrow and the intermode frequency spac-
ing can be large compared with the gain line. By contrast, solid-state la-
sers characteristically have broad gain lines, such that detuning within the
limits required for instability is feasible only with use of special resona-
tors containing controlled frequency selecting elements [424]. These a con-
ditions under which the frequency dependence of the bidirectional ring
Nd:YAG laser action was experimentally demonstrated [425].

Fig. 5.6 a,b,c.
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Fig. 5.6a,b,c,d,e,f. Examples of numerical solutions to Eqs. (5.9) for the parameter values:
05.0;0.4;0;10 c

4 =∆==∆=== ±
±± ArG β  (a);  0.2 (b );  0.4 (c);  0.6 (d);  0.9;

(e); 1.1 (f) [417].

However, Nd:YAG lasers exhibit unstable behaviour when operated with
a nonselective resonator [113, 157, 158]. This requires a spectral asymme-
try which is present here since the neodymium gain line is not homoge-
neously broadened but consists of two overlapping components. First of
all, near λ  = 1.064 µm there is located not one but two luminescence lines
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of the neodymium ions implemented in the YAG matrix, [43, 426]. The
idea that the self-modulation regime of the second kind takes place due to
the existence of fine structure of the gain line was first proposed in [427]
and then developed in [422, 428]. At room temperature the distance be-
tween these components is of the order of the halfwidth of each line and
the line intensities differ by about a factor of three. The asymmetry intro-
duced by the weaker component plays, from the stability point of view, the
same role as the cavity detuning. The laser frequency coincides with nei-
ther the centre frequency of the strong component, nor with the centre
frequency of the additional spectral component. This impedes a simple
separation of the functions of the two components in the sense that the
strong component is responsible only for the gain while the weak one in-
fluences only the stability. Although there is a major contribution to the
gain by the strong line, the wave interaction occurs through both inversion
gratings, which makes the analysis somewhat more complicated.

Generalization of the class B ring laser equations to include a two-com-
ponent medium is straightforward:
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The printed symbols indicate the quantities related to the weaker com-
ponent of the gain line. Besides the variables, they include the parameters:

⊥′−=∆′ γωω /)( 00  is the laser frequency detuning from the weak compo-
nent centre, 1

0 )1(
~ −∆′−=′ iF  is the function of the weak line form,

FL ′=′′−=∆′ ⊥
~

Re
~

,/)( 00 γωω , and || ρ=r .
As for the homogeneously broadened model, Eqs. (5.18) have two time-

independent solutions corresponding to the opposite travelling wave laser
beam directions. In the limit r = 0 the following asymptotic form is valid
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The expressions
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do not depend on the direction of propagation. Linearization of Eq. (5.18)
near one of the fixed points leads to a set of equations that can be decom-
posed into two closed subsets. Only that which corresponds to perturba-
tion of the variables of zero steady states values contains a potential insta-
bility. Taking for specificity Eqs. (5.20) as the initial state we arrive at the
linear subset of equations
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Based on the assumption that the complex roots of the characteristic equa-
tion satisfy the condition 1|Im/Re| <<λλ , we calculate the approximate
values of the relaxation oscillation frequencies

  )
~~

(
2

1
Im 0

2
0

2
2,1, nLnLmGBA ′′+==Ω λ (5.24)

and find the instability condition of the travelling wave solution

                 0ReImRe 32,1
2

, ≥−Ω+Ω aaa BABA . (5.25)
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Fig.5.7. Phase diagram for the model of ring laser with a two-component gain line:
=′=′== ⊥⊥ γγ /;4.0;2.1;5000 AAG 1 (a), 1.3 (b) [428].

At 0=∆′  the expressions (5.24) and (5.25) coincide with Eqs. (5.15) and
(5.16).

The boundaries of the instability domains in the phase plane ∆′∆ ,0 ,
calculated by Eqs. (5.24) and (5.25), are given in Fig. 5.7. The position of
the resulting gain line maximum is also indicated. It almost coincides with
the steady-state laser frequency since the longitudinal mode, the nearest to
the maximum, is generated.

In the situation, shown in Fig. 5.7a, the instability is absent. Neverthe-
less, an instability can be obtained by a relatively small variation of the
parameters. It should be borne in mind that the parameter G can be deter-
mined from experiments accurate to within 30 per cent [429] and the ratio
A′/A is estimated as 1/3 with still a higher accuracy [43, 426]. The spectral
linewidths are known with lower accuracy. The ratio ⊥⊥ ′γγ /  is evaluated
as 1.06–1.14 using the experimental data from [426] and as 1.24 from [430].

Figure 5.7b shows the result of calculation of instability domains with
the unequal ⊥γ  and ⊥′γ . The remainder of the parameters are chosen the
same as in Fig. 5.7a. The time-independent solution is unstable in the range
∆′= 0.4-0.8. The measured value ∆′= 0.6 enters exactly this range [426].
Thus, the proposed interpretation of the self-modulation regime of the sec-
ond kind of a Nd:YAG laser as resulting from the interaction of the counter-
running waves by two self-induced inversion gratings seems quite realis-
tic. This is confirmed by the form of the solution (Fig. 5.8), which is simi-
lar to that obtained in the presence of detuning in a homogeneously broad-
ened medium (see Fig. 5.6).

There is another, more universal mechanism, which is equivalent to
detuning of laser frequency from the gain line centre. This mechanism is
based on the distinction in polarizabilities of the impurity ions being on
different energy levels. We have mentioned about this phenomenon in Sec-
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tion 5.1. An important contribution to this phenomenon is made also by
the transitions that are situated from the upper laser level at a distance
much greater than the linewidth. These transitions influence the refractive
index but do not change the gain.

In semiconductors this circumstance plays a very important role, but in
crystals such as Nd:YAG we also cannot ignore it.

In the theory of the ring laser, the α-factor is taken into account in the
same manner as in the theory of the Fabry–Perot laser, and the correspond-
ing model has the form [431]
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Equation (5.26) contains a term responsible for the diffusion of the active

Fig.5.8. Self-modulation regime of the second kind in the instability domain of a laser
with a two-component gain l ine,  found by numerically solving Eqs.  (5.18):

0;10;0.1;2.1;5000 3 ===∆′== − ϑrAG .
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centres, which makes it possible to influence (at least theoretically) the
inversion grating amplitude.

In addition to two nontrivial steady-state travelling wave solutions

        0),exp(2/1 =−= −+ fimf τϕ�

        )exp(,0 2/1 τϕ�imff −== −+ ,  (5.27)

1,0,1,
2

1
20 −==== AmnnGαϕ� ,

we must write one more solution corresponding to the regime of genera-
tion of two counter-running waves

)exp(||),exp(, 22
2/12/1 ψτϕ innimfmf −=−== −+ � ,

             πψϕ =−−=−= ,1||,2 020 nnmAn , (5.28)
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For zero values of the diffusion coefficient and the α-factor the steady
state corresponding to the standing wave solution, as was mentioned above,
is unstable [419, 420].

The stability analysis of each travelling wave solution gives results that
generalize the results obtained in Section 5.2.1. Besides the main relax-
ation oscillation, there are two phase-sensitive oscillations with the fol-
lowing frequencies and damping rates:
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Both phase-sensitive relaxation oscillations are frequency-degenerate. They
lose their stability when the inequality

  )1(2

)(2 dif
cr −

+=>
AG

dAαα (5.31)

is fulfilled. For d
dif

= 0 Eqs. (5.29) and (5.30) transform in Eqs. (5.15) and
(5.16), respectively.

Dependences expressed by Eqs. (5.29) and (5.30) are shown in Fig. 5.9
for two values of the α-factor. For α = 0, the phase-sensitive relaxation
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oscillations are completely frequency-degenerate in the whole domain of
their existence. Exceeding of the diffusion coefficient of some critical value

(0)
cr1d  results in disappearance of these oscillations with transformation of

the complex roots in the real ones. The picture drastically changes when
α ≠ 0: the degeneration in the dumping rate is eliminated regardless of the
value of the diffusion coefficient, while the frequency degeneration of the
relaxation oscillations remains. In the critical point

            AAGd cr −−= )1(
2

1(1)
cr1 α (5.32)

the quantity Aθ  reverses in sign. In the domain (1)
cr1dif dd <  the unidirec-

tional steady state becomes unstable and gives way to either the undamped
pulsations or the bidirectional generation.

The linear stability analysis of the steady state (5.28) leads to a charac-
teristic equation of the seventh order, which can be investigated only by
numerical methods. Examples of calculated dependencies of frequencies
and damping rates are given in Fig. 5.10. Only two relaxation oscillations
are inherent to the bidirectional regime of operation. The frequency of the
main oscillation is close to W

1
 changing a little depending on the values of

d
dif

 and a. The phase-sensitive relaxation oscillation belongs to antiphase
dynamics. Its frequency decreases when the diffusion coefficient grows

Fig.5.9. Dependence of the frequencies and decrements of relaxation oscillations near the
steady-state solution (5.27) on the diffusion coefficient at G = 5000, A = 4. Solid lines
correspond α = 0, while strip lines to α = 0.2 [431].
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Fig.5.10. Dependence of the frequencies and decrements of relaxation oscillations near
the steady-state solution (5.28) on the diffusion coefficient at G = 5000, A = 4, α = 2
[431].

and becomes zero in a point )0(
cr2dd =  where the complex characteristic

roots transform in the real ones. Decrement θ becomes zero at (3)
cr2d . Below

this point the decrement is positive, which corresponds to undamped
antiphase pulsations of counter-running wave intensities. In the interval

(3)
cr2dif

(2)
cr2 ddd <<  the regime of bidirectional operation remains stable but

has only one relaxation oscillation.
Figure 5.11 represents the regionalization of the α , d

dif
 parameter plane

into domains with different laser behaviour. Under the solid straight line
(5.31) there is the region of stable generation of a travelling wave. The
region of two-wave generation is situated in the acute angle between two
dashed curves. The vertical orientation of the left border means that (1)

cr2d
is practically independent on α . The transition to instability in the moment
of the border intersection is realized through the Hopf bifurcation.  Hatch-
ing on the phase diagram indicates zones of bistability: depending on the
initial conditions, either single-wave or two-wave operation is realized to
the right from ���

����  , whereas to the left from this point the stable unidirec-
tional and unstable bidirectional operations co-exist.

From given in this section consideration it follows that the parameters
of the inversion gratings burned in the active medium by the joint action
of the interacting modes influence in some sense the dynamical behaviour
of the laser. Theoretically, it is possible to influence the grating amplitude
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by means of the diffusion coefficient, but the practical possibility of this
method is very problematic. More simple is to control the α-factor using
its dependence on the detuning.

5.2.4 Steady States in the Presence of Backscattering and Their
Stability
In this section the form of the equations rewritten in terms of the real
amplitude and phase is more useful. The transition to this form from Eqs.
(5.9) is made by way of the relations

-
ccNR222 ),exp(),exp( ∆−∆=∆== +

±±± ϕϕ inniFf r ,

−+−++−+ −=−−=Φ+−=Φ ϑϑϑϕϕϕϑϕϕ ,, 221 .

The resulting equations are given by
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Fig.5.11. Phase diagram of the set (5.26) in the plane of the control parameters d
dif

, α ,
 
 at

G = 5000, α  = 4: 1 is the area of stable generation of travelling wave: 2 is the area of stable
generation of standing wave; 3 is the area of nonstationary regimes; hatching corresponds
to the bistability zone [431].
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We now simplify our consideration by confining ourselves to the par-
ticular case of neither detuning nor nonreciprocity [158–160, 213, 214,
432, 433]. Owing to linear coupling, the steady states cannot exist in the
form of pure travelling waves. However, the deviations from these ideal
solutions for r << 1 are small enough and the time-independent solutions
can be represented in the form of series expansion in terms of the small
parameter r. The presence of weak coupling is unnecessary for the conclu-
sion that the regimes with equal representation of both waves are unstable.
The steady-state solutions with considerably unequal mode amplitudes (for
definiteness, −+ >> FF ) for rrr =====∆=∆ −+−+ ,0,00NR ββ  are ex-
pressed by
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Linearization of Eqs. (5.33) near the steady state (5.34) leads to a char-
acteristic equation
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where )(2 λU , )(2 λV , )(2 λW  and )(2 λZ  represent quadratic polynomials:
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The characteristic equation (5.35) is decomposed into two parts. The first
equation has roots
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The fourth-order equation
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is a minimum for ϑ = 0 and reaches ∞ if ϑ = +π.
From Eqs. (5.37)–(5.39) it is seen that oscillations with a frequency Ω

1

are damped in any case, while those with frequency 2/1Ω  are undamped
for r > r

cr
. Instability developed at r > r

cr
 leads to antiphase modulation of

the counter-running wave intensities (Fig. 5.12), which we call the self-
modulation regime of the first kind. Near the instability threshold the os-
cillation frequency Ω ≈ Ω

1
/√2 and it grows proportionally to r for r>>r

cr
.

This regime of pulsations is always regular [434]. It has been observed
experimentally in Nd:YAG lasers (see Section 1.2.3).

In a class B ring laser under the condition r < r
cr
 both symmetric steady

states corresponding to unidirectional modes are stable. The transient pro-
cess is taking place in oscillatory manner. So, the relaxation oscillations
belong to a definite steady state. However, for r > r

cr
 the self-modulation
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regime of the first kind sets in, which is also stable. In the phase space it is
represented by a limit cycle. The transient process near this singular tra-
jectory is considered in [435] where it is shown that it also has oscillatory
behaviour. In this case one also has right to speak about relaxation oscilla-
tions.

5.2.5 Competition of two instability mechanisms
In the previous sections we have considered two ideal situations. In one of
them detuning is absent and the laser behaviour is governed exclusively
by the coupling of the waves via spontaneous scattering due to
microinhomogeneities. In the other, there is no spontaneous scattering but
the nonlinear wave scattering via the wave-induced inversion grating (in-
duced scattering) becomes an important dynamical factor in the presence
of detuning. In general, both factors are present, so that a competition (or
reinforcement) between two instability mechanisms occurs [434, 436]. This
general case is shown by the phase diagram in Fig. 5.13 in the plane of the
control parameters (r, ∆

0
). Note, first of all, the solid line, above which

there is the domain of time-dependent solutions. To the right from the dash-
dotted line there is the domain of self-modulation of the first kind with
regular (periodic) solutions. The dash line giving the boundary between
the domains of the second kind of instability and of chaotic behaviour is
approximate since there is no sharp transition from one to the other.

The overlapping domains of laser bistability (hatched regions) add to
the complexity. Stable steady solutions and self-modulation processes of
the first kind coexist in the domain between s, r

0
 and r

cr
, chaotic and regu-

lar pulsations coexist in a narrow vertical band, chaos and steady-state
solutions coexist in the region on the left of the sr

0
 line. Self-modulation

of the second kind smoothly connects to stable unidirectional solution since
the switching frequency of the beam direction decreases continuously and
infinitely as ∆

0
 approaches ∆

cr
 and grows tending to Ω

0
 as r → r

0
. Of fur-

Fig.5.12. Example of numerical solution to Eqs. (5.33) for the self-modulation regime of
the first kind: 0;0;05.0;2.1;5000 0NR =∆=∆==== ϑrAG
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ther interest is the small domain of tristability where chaotic pulsations,
regular pulsations of the first kind or CW can be found depending on the
initial conditions.

The basis for labelling the boundaries on the phase diagram (Fig. 5.13)
was the form of the solutions obtained by numerical integration of the ring
laser equations. The accuracy of the interpretation of the different regimes
has been confirmed by calculation of the Lyapunov exponents and dimen-
sion of the attractor.

5.2.6 Role of Phase Nonreciprocity in the Dynamics of a Class B
Ring Laser
The prospect of making account of all three factors contributing to ring
laser dynamics – detuning, backscattering and phase nonreciprocity –makes
an analytical investigation of the model unrealistic. We therefore neglect
detuning in the following treatment. If phase nonreciprocity is included in
the analysis, then the steady-state solutions increase in complexity and are
transformed from Eq. (5.34) into
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Fig. 5.13. Phase diagram of a ring laser plotted in the control parameter plane ( 0,∆r ):
0;0;2.1;5000 NR =∆=== ϑAG .
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The generalized characteristic equation (5.35) takes the form
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Here )(3 λU  and )(4 λU  are third- and fourth-order polynomials, respec-
tively. In the limit r → 0 Eq. (5.42) again decomposed into two equations.
The roots of the quadratic equation 0)(2 =λW  are known:
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The remaining fourth-order equation

         0)(
22

22
2

0
2 =



 +∆+





 ++ λλλ A

G
F

G
A NR (5.43)

yields two pairs of conjugate complex roots

      BBAA ii Ω±=Ω±= θλθλ 4,32,1 , . (5.44)

Neglecting the weak damping, the relaxation oscillation frequencies are
given by
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Thus, the presence of phase nonreciprocity removes the two-fold degen-
eracy of the relaxation oscillation spectrum. Phase nonreciprocity also in-
fluences the damping rates of relaxation oscillations
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Fig.5.14. Dependence of (a) frequencies and (b) damping rates of relaxation oscillations
on phase nonreciprocity: G = 5000; A = 12; r = β = 0.

The resultant dependences are illustrated in Fig. 5.14.
Eq. (5.45) shows the new possibilities offered by class B lasers for gy-

roscopic applications. It appears that information on the phase
nonreciprocity (rotation, in particular) of the laser cavity is contained not
only in the laser field optical spectrum but also in the low-frequency re-
laxation oscillation spectrum. Hence, the rigid requirements for equal rep-
resentation of both waves are removed. However, the problem arises: How
can this information be retrieved from the laser output?

Unfortunately, there is no simple answer to this question. It seems most
natural to make use of the modulation transfer function, i.e., the laser re-
sponse to modulation of one parameter. Such a characteristic must have
resonant features at the relaxation frequencies (for more details see Chap-
ter 6). The resonant peaks also should be observed in the intensity fluctua-
tion spectrum. The resonance effect for the frequency Ω

1
 was theoretically

predicted in [352] and experimentally substantiated in the solid-state laser
investigations [429, 437]. Besides the peak at the intensity fluctuation spec-
trum contains peaks at other frequencies of specific relaxation oscillations
of the weak wave. However, the observation of such peaks requires some
additional conditions to be satisfied [173, 174, 438].

The difficulty is that the transfer function has resonant features for the
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frequencies given in Eq. (5.45) but they are present with strength propor-
tional to the small coefficient r2. This makes practical observations of such
peaks more difficult. This problem is completely unresolvable in the laser
far from the instability threshold. However, regenerative amplification of
oscillations at the system eigenfrequencies is evident near the instability
threshold, leading, as is well known, to an infinite growth of resonance
peaks with the simultaneous infinite narrowing. It is the regenerative noise
amplification, which makes it possible to observe the resonance features
in their intensity fluctuation spectrum of a solid-state ring laser. Owing to
the line narrowing, however, it is not easy to see the resonance peaks on
the transfer function, since there are sharply increased stability require-
ments imposed both on the laser itself and on the modulation signal.

The roots of the characteristic equation (5.42) cannot be found analytically
when 0NR ≠∆  and 0≠r . In this case, however, the laser dynamics exhibits
interesting features [174, 434, 436]. In the vicinity of the point 1NR Ω=∆G ,
where two branches of relaxation oscillations, Ω

1
 and Ω

A
, intersect, their damp-

ing rates are subject to abrupt change. From the diagrams in Fig. 5.15, ob-
tained by numerical methods, it is seen that there is a sign reversal in the damp-
ing rate and, therefore, a loss of stability of the time-independent solution for
r < r

cr
. Numerical integration of Eqs. (5.9) indicates that the self-modulation of

the first kind arises. However, introducing a weak (within 10–4–10–3) ampli-
tude nonreciprocity −+ −= βββNR  converts the regular process to a chaotic
one. The general situation is explained by the phase diagram in the plane of the
control parameters ( NRNR , β∆G ) in Fig. 5.16 [439].

The behaviour of a Nd:YAG laser under these conditions is illustrated
by the intensity fluctuation spectra obtained experimentally. Stable unidi-
rectional lasing modulated by a weak noise is depicted in Fig. 5.17a. The
presence of peaks other than just at Ω

1
 indicates the laser is close to the

instability threshold, since a single peak is observed for over most of the
stable single-mode domain. A transition to the unstable domain is accom-
panied, as seen in Fig. 5.17b, by broadening of the resonance peak owing
to convergence of Ω

1
 and Ω

A
. Such a broadening is characteristic for cha-

otic pulsations.
It is important to note that the strong and weak waves carry different

information about the laser processes. In the intensity fluctuation spec-
trum of a strong wave, the peak dominates at Ω

1
 and the peaks at Ω

A
 and

Ω
B
 are suppressed because of smallness of the parameter r2 and are, there-

fore, exhibited only near the instability threshold. By contrast, the peak at
is absent in the weak wave spectrum while the conditions under which the
other two peaks are manifested in the weak wave are the same as those
described above.

The ring laser is sensitive not only to the absolute value but also to the
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Fig.5.15. Frequencies (a) and damping rates (b) of relaxation oscillations as a function of
phase nonreciprocity in the vicinity of the intersection point of branches 

|
Ω

1
 and Ω

A
:

02.0;2.1;5000 === rAG .
Fig.5.16 (right). Phase diagram of a ring laser in ∆

NR
, β

NR
 plane: G = 5000; A = 1.2; A′  =

0.4; r = 0.005;  ∆
0
 = 0; ∆′  = 0.6;  γ⊥ /γ⊥ ′   = 1.3; ϑ  = 0;

  
∆

0 
= 0.173.

sign of phase nonreciprocity. This property is apparent only if the gain
line is asymmetric with respect to the laser frequency, as in the case of
two-component gain line. If the relaxation oscillation frequency is fol-
lowed by moving along the stability boundary in the phase diagram, then
the result is the curve Ω(∆

NR
) presented in Fig. 5.18 [439]. The main fea-

ture of this dependence is the smooth transition from one branch of relax-
ation oscillations (Ω

A
) to another (Ω

B
) at point  ∆

NR 
= 0.

5.2.7 Frequency Dynamics of a Bidirectional Ring Laser
According to Eq. (5.11), the ring laser for r = 0 has two equivalent steady
states in the form of travelling waves. The phases of the time-independent
solutions are given by the expressions

)(
2 c0

±
± ∆+∆= Gϕ� ,

which determine their frequencies

±± += ϕ
κ
γ

ωω �~
||

0 .

In the absence of phase nonreciprocity these formulas offer the same frequency
shift from cω  toward 0ω  for the two single mode solutions because of the
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Fig.5.17. Experimental spectra of the
intensity fluctuations of a ring Nd:YAG
laser below (a) and above (b) instability
threshold of stationary generation [174,
436].

Fig.5.18. Plot of the dependence of the
relaxation oscillation frequency on phase
nonreciprocity to illustrate the smoothness
of the transition from branch Ω

A
 to branch

Ω
B
 at point ∆

NR 
= 0. The dip on the plot

corresponds to the point of intersection of
branches Ω

A
 and Ω

1
 [439].

linear frequency pulling.
The behaviour of frequencies under self-modulation of the second kind,

which arises for cr0 ∆>∆ , can be investigated by numerical integration of
Eqs. (5.9) [440]. Figure 5.19 shows the behaviour of the wave intensities
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Fig.5.19. Time dependence of (a) intensities and (b) frequencies of the counter-running
waves of a ring laser operated in self-modulation regime of the second kind in the absence
of phase nonreciprocity G = 5000; A = 4, 0; r = 0; 

0
 = 0, 1; ∆

NR
 = 0  [440].

and frequencies in the absence of nonreciprocity and scattering
( 0NR ==∆ r ). It is seen that as the direction is changed, the laser frequency
retains its position corresponding to the steady-state single-mode solution.
At the time when the wave becomes strong it forces the competing counter-
running wave to a position further from the line centre. The frequency
difference is )( BA ΩΩ  until the weak wave reaches a minimum in its inten-
sity. At this moment its frequency changed by BA Ω+Ω , so that the weak
wave (while it is growing) is closer to the line centre than the strong wave.

AΩ  and BΩ  are the frequencies of phase sensitive relaxation oscilla-
tions of the ring laser. These frequencies coincide in the absence of phase
nonreciprocity. Note also that both waves have completely equal rights
and each wave dominates exactly half the self-modulation period.

According to [440], nonzero phase nonreciprocity produces a dominant
wave, the duration of which exceeds half the self-modulation period (Fig.
5.20). Simultaneously, the symmetry is broken in the frequency dynamics.
In Fig. 5.20b it is seen that the laser frequency is closer to the line centre
during the time interval when the dominant wave is strong (dashed line).
In this case BA Ω≠Ω  and Ω

A
 – Ω

B
 = G∆

NR
/2.

Switching of the weak wave frequency by BA Ω+Ω  is nonmonotonic. It
is preceded by growth of oscillations near the initial frequency. The fre-
quency damping is ended by damped oscillations near the new value. The
frequencies of the transient oscillations found by numerical computation
coincide with BA Ω+Ω . It should be mentioned that a particular combina-

a

b
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Fig. 5.20. The same as Fig. 5.19 but in presence of phase nonreciprocity (G = 5000; A = 4,
0; r = 0; 

0
 = 0, 1; ∆

NR
 = 30) [445].

a

b

tion of the signs of ∆
NR 

and ∆
0
 is not important to the dynamic process

described except that it defines which wave will dominate.
Summing up our consideration of a bidirectional class B ring laser we

would like to focus on its most typical properties:
– there are two more specific (phase-sensitive) types of relaxation oscil-

lations in addition to the ordinary oscillations;
– there are two different instabilities of the unidirectional lasing and there

are, correspondingly, two forms of self-modulation processes reached
by the specific relaxation oscillations;

– there is a strong influence of both amplitude and (which is of greater
interest) phase nonreciprocity on the laser dynamics and the radiation
characteristics in both stable and unstable domains.
It should be emphasized that all of the conclusions of the theoretical

analysis in this section have found experimental confirmation and almost
all the experimental facts have received theoretical interpretation. The
qualitative agreement between theory and experiment means that the laser
models described here are adequate to describe the real laser systems. Thus,
the class B ring laser has priority as one of the most promising laser sys-
tems for complex behaviour with quantitative agreement between theory
and experiment. This is important both for verification of the fundamental
theoretical postulates of nonlinear dynamics and for the development and
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verification of the new methods of retrying information about the laser
parameters from the dynamic behaviour.

5.3 Vector Model of a Fibre Laser

Until the polarization remains a fixed characteristic of the radiation field
the scalar model is adequate to the situation. However, when the polariza-
tion plays the role of independent degree of freedom, then the theory would
be made more complex. The vector model assumed existence of two states
of the field with orthogonal, generally – elliptic polarizations. So, all las-
ing modes are separated in two groups according to their polarization. In
its turn, each such an ensemble manifested some dynamic properties and
this allows using the term polarization mode. There are only two polariza-
tion modes. They compete like ordinary longitudinal or transverse modes
through the cross-saturation of the active medium. Indeed, hole burning
means deformation of the angular profile and this is possible if the distri-
bution of the dipole moments of active centres is different from δ-func-
tion. A uniform angular distribution is peculiar to the glasses and optical
fibres. Something like this takes place in semiconductor lasers with verti-
cal cavities. The impurity ions in crystals can take the places in different
lattice points, which lead to different orientations of the transition dipole
moments.

So, the main features of polarization dynamics can be obtained using
the vector model, which is in many aspects similar to the ordinary two-
mode model. Presence of a weak birefringence prevents the frequency de-
generation. Nevertheless, the theoretical model would take into attention
the phase-sensitive interaction of polarization modes.

There is a vast literature devoted to polarization dynamics including
[441–449], which are devoted to class B lasers. It is impossible to present
a complete list of existing publications. We will refer to the Special Issue
of the Quantum and Semiclassical Optics journal (v.10, #1, 1998).

Creating the vector model adequately describing the main features of
the fibre laser polarization dynamics, we will proceed from the existence
of two orthogonal states of elliptical polarization of the field but neglect-
ing the variation of these states along the fibre axis. The vector field in-
side the cavity can be represented as a superposition of two orthogonal
polarized components:

)exp()( 2211 tiff ωUUE += , (5.47)

where

)sin(2 2,1
0

2,12,1 ζπknU = (5.48)

are the cavity eigenfunctions, and
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    2
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||1 m
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γ
γ
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+= yx
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are the unit vectors, which are determined by the Cartesian components
00 , yx  and the complex parameters 2,1γ  satisfying the relation 121 −=∗γγ

and determining the ellipticity of the eigenfunctions

      2
2,1

2,1
2,1 |Im|1

Im2
arcsintan

γ
γ

ε
+

= .  (5.50)

The dipole moments of the active centre transitions are suggested linearly
polarized and uniformly distributed over all azimuthal angles ψ  in the
plane normal to the fibre axis. Interaction of the elliptically polarized field
with the ensemble of randomly oriented dipoles leads to hole burning in
the azimuthal inversion distribution, which can be presented in the form

...)2sin(2)2cos(2 sc0 +++= ψψ nnnn . (5.51)

Each angular component of the inversion in ( sc,,0=i ) in its turn consists
of the uniform along the cavity axis component and spatial harmonics:

      ])(cos[2 212,10 ζπ kknnn iii −+= . (5.52)

Only large-scale components of spatial expansion of the field are kept in
Eq. (5.52) because the number of longitudinal modes in the fibre lasers is
very large, which lead to smoothing of the small-scale structures in the
distribution and absence of antiphase relaxation oscillations, which have
been mentioned above. The difference in wave numbers k

1
 and k

2
 for the

polarization modes can be caused by a weak birefringence in a fibre due to
local mechanical tensions.

The developed ideas lead to the following fibre laser model [446]:
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For simplicity we used here the following notation:

       22

2

||1

Re2
,

||1

||1

m

m
m

m

m
m dc

γ
γ

γ
γ

+
=

+
−= ,

PLP
2

,
)||1)(||1(

1 21

2
2

2
1

γγ
γγ

+=
++

=
∗

, (5.54)

∫∫∫ ===
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AAAAAdA .

The last line contains quantities describing the pump polarization produced
by a semiconductor laser beam, which is focused through the end inside
the fibre.

The set of Eqs. (5.53) describes the main features of dynamical behaviour
of the neodymium doped fibre laser: the dependence of parameters of the
output radiation on the pump polarization, presence of the resonance peaks,
corresponding to antiphase relaxation oscillations, in the power spectrum
of the polarization modes and its absence in the total intensity. The mea-
sured ratio of the frequencies of relaxation oscillations can be reproduced
in theory by appropriately choosing the degree of ellipticity of the polar-
ization.
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Chapter 6

Lasers with Time-Dependent
Parameters
Parameter modulation is an effective method to control the laser behaviour.
A relatively weak periodic modulation is capable of producing a much
stronger response in the laser output. Owing to the system nonlinearity
this response can be not only regular but also chaotic.

Due to the high sensitivity of lasers to external modulation, uncontrolled
parameter variations during the laser operation can produce random spik-
ing.

Thus, there is considerable interest in nonautonomous laser models both
for control of the emission and for interpretation of spontaneous time-
dependent phenomena.

6.1 Lasers with Periodic Parameter Modulation

We will focus our discussion on the response of class B lasers to weak
periodic modulations of parameters [96, 450-457]. There are four impor-
tant parameters accessible for modulation in the models we have consid-
ered: tr,, σκ A  and ||γ . However, the last parameter is relatively insensi-
tive to variation of the external conditions, therefore, it is generally more
interesting to study the laser behaviour when one of the other three param-
eters is modulated.

6.1.1 Linear Response of a Single-Mode Laser to Low-Frequency
Modulation
Our discussion is based on the rate equations (3.11):
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      )1
~

(
d

d −= nLGm
m

τ . (6.1a)

    )1
~

(
d

d +−= mLnA
n

τ . (6.1b)

1. Assume first that the cavity losses are modulated harmonically and,
therefore, Eqs. (6.1) are replaced by

       [ ])cos(1
~ τΩβ

τ lossnLGm
d

md −−= , (6.2a)

    )1
~

(
d

d +−= mLnA
n

τ , (6.2b)

where lossβ  is the depth of loss modulation.

Since Eqs. (6.2) contain time explicitly, they have no time-independent
solutions. Only in the limit 0loss →β  do the solutions of these equations
tend to the solutions of the unperturbed Eqs. (6.1):

L
n

L

A
m ~

1
,~

1 =−= . (6.3)

Considering the loss modulation as a perturbation we will seek Eqs. (6.2)
for solution in the form

c.c.)exp(~c.c.,)exp(~ +Ω+=+Ω+= ττ innnimmm     (6.4)

Inserting Eqs. (6.4) into Eqs. (6.2) and neglecting all the nonlinear combi-
nations of mn ~,~,lossβ  we find the transfer functions
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The quantity

    Ω−Ω−Ω
+Ω=≡

LiA

ALi
G

m

m
K ~

~2
2
1

2
loss

loss
loss β ,                (6.6)

which represents the ratio of the modulation depth of the output beam to
the modulation depth of the cavity losses will be called the loss modula-
tion amplification factor.

The perturbation can be assumed to be weak and the linear approxima-
tion to be valid if 1/~,1|/~| <<<< nnmm , which is equivalent to
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Relations (6.5) and (6.6) have the form of resonance. The loss modulation
amplification factor reaches a maximum at )1

~
(1 −=Ω=Ω LAG , i.e., when

the modulation frequency coincides with the frequency of relaxation os-
cillations. Under the condition LA

~>>Ω  the relations (6.6) and (6.7) at
resonance transform to
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G
K ~)( 1loss =Ω (6.8)

and
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cr
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1
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KG

LA ==<< ββ , (6.9)

respectively. For solid-state lasers the typical values are 410≈G  and LA
~

is of the order of unity. This means that the order of magnitude of K
loss

 is
104, so that a loss modulation depth 4

loss 10−≈β  is sufficient for the onset
of large-amplitude nonlinear pulsations.

2. If the pumping is modulated harmonically, then Eqs. (6.1) are replaced
by
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An established solution is again sought in the form of Eqs. (6.4). Putting
this solution into Eqs. (6.10) and linearizing yields
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The modulation amplification factor is represented in this case by the quan-
tity
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Under exact resonance
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The condition for small response is now expressed by

GLAG /)1
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The values 2
~

,104 == LAG correspond to 2cr
pump 10−=β .

3. The transition cross-section trσ  is included in Eqs. (6.1) and else-
where below in the line shape function L

~ . Modulation of cross-section is
thus equivalent to laser frequency (detuning) modulation. Replacing L

~  by
)]cos(1[

~
s-c τβ Ω+L  in Eqs. (6.1) we arrive at
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repeating our search for linear response to weak harmonic modulation of the
parameter ( L

~ in this case) we get

        Ω−Ω−Ω
Ω+−=

LiA

iG

m

m
~

1

2

~
2
1

2
s-cβ

, (6.17a)

       Ω−Ω−Ω
+Ω−=

LiA

GimG

n

n
~2

~
2
1

2
s-cβ

. (6.17b)

In the limit LA
~>>Ω  the relation (6.17a) coincides, except for the sign,

with Eq. (6.5a) and, therefore, cr
loss

cr
s-c ββ = .

Of all these methods for resonance excitation of class B laser pulsa-
tions, pump modulation is the least effective. According to Eq. (6.14), the
resonant pump modulation amplification factor is proportional to G ,
whereas G appears in the other two cases. This is because the inversion
decay rate in such lasers is noticeably less than the relaxation oscillation
frequency; thus, pump modulation is transformed into inversion modula-
tion with considerable attenuation.

It is worth noting that in a time-independent process the inversion is
stabilized at a level given by the cavity losses. Low-frequency pump fluc-
tuations are unable to disturb the inversion from its steady state value.
This is seen from Eq. (6.11b), according to which 0→n  as 0→Ω .
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6.1.2 Linear Response of a Multimode Laser to Low-Frequency Loss
Modulation
If synchronous and proportional modulation of all modes is provided, then
the result will be the same as that obtained in Section 6.1.1 for a single-
mode model. Let us suppose that the losses of the separate modes can be
modulated independently. The response of all of the mode intensities to
the modulation of the loss of one selected mode will be considered below.
This situation is described by the set of equations
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τ ppkkkk
k vdnLGm

d

md −−= ∫ , (6.18a)
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which are a direct generalization of Eqs. (4.10). If solutions are assumed
in the form

 )exp(~)exp(~ ττ Ω−+Ω+= ∗ imimmm kkkk ,

 )exp(~)exp(~~ ττ Ω−+Ω+= ∗ ininnnk ,

then their substitution into Eqs. (6.18) leads to the linear response equa-
tions
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We then follow the scheme given in Section 4.2.1. Expressing from Eq.
(6.19b)
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we use it in Eq. (6.19a) and integrate.

Assuming 1~ ≈n  and 1
~ ≈L  we obtain, for large number of longitudinal

modes (N >> 1), the set of equations
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The solution is expressed by Kramer’s rule: DDm kk /~ = . The determi-
nants D and D

k
 are given, according to [330], by
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Since the losses of only one selected mode undergo modulation, it should
be reasonable to give the responses of this and remaining modes sepa-
rately:
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is a quantity, which differs slightly from unity when a large number of
modes are excited. The expressions noticeably differ from each other.

Let us specify the relations (6.24) and (6.25) for two of most interest-
ing types of laser: a solid-state laser and a dye laser. Characteristic of the
first type is the large value of the parameter G and the relatively small
number of excited modes, so that 1)2/(2/2 >>≅=Ω NGmmG kk . At reso-
nance ( pΩ=Ω ) for the modulated mode we have

                                              A

G

m

m p

p

p

2

~ β
≈ .                                    (6.26)

The criterion of applicability of the linear approximation is expressed by
inequality

       
G

A
pp =<< crββ , (6.27)
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which, formally, is the same as Eq. (6.9). Making the same assumptions
for an unmodulated mode we obtain

            AN
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m

m p

k

k

2

~ β
≈ , (6.28)

i.e., an N times smaller response.
Things are quite different in the case of a dye laser, since 1≤G , while

N >> 1 and, consequently, 12 <<Ωk . Assuming that the modulation frequency
is in the range 1<<Ω<<Ωk  we find Ω≅ iAH q  and ∑ Ω≅Ω )2/()( 2 iAGmq ,
which leads to
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2

~ ββ
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Here again the modulation amplification factor of the selected mode,
Ω≅ /loss GK , can reach large values, but this time it is due to the small

value of Ω rather than to a large value of G. The condition for validity of
the linear approximation is

          
Gpp

Ω≈<< crββ . (6.30)

Experimental investigations of an Nd:YAG laser with a small number
of excited longitudinal modes shows that the transfer function for the total
intensity contains remarkable resonance features at the frequencies of
antiphase relaxation oscillations [458]. Meanwhile, as was noted in the
Section 4.2.2, no such features have been found in the power spectra of
total intensity.

An interesting regularity is traced in distribution of the phases of the
intensity oscillations of individual modes [458, 459]. Let us be consistent
with the principle of mode numeration in accordance with decreasing
steady-state intensities and relaxation oscillation numbering in accordance
with decreasing eigenfrequencies adopted in Chapter 4. If the modulation
frequency pΩ=Ω , then modes are divided into two groups: the ampli-
tudes of modes with numbers 1,...,1 −= pk  oscillate in phase as well as the
modes with numbers Npk ,...,= . However, relative to each other these
two groups oscillate in opposite phases. Such are the results of numerical
calculations of modules and phases of the transfer functions using the model
(6.10). The experiment confirming the fact of clusterization shows, how-
ever, some different distribution of modes into groups [458]. The reason
could be a difference in length of the cavity and the active element that
does not take into account in the model but can influence the laser dynam-
ics as have been shown in Chapter 4.
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There are also discrepancies between the results of theoretical calcula-
tion and experimental data in positions of the peaks with maximal inten-
sity on the transfer functions of individual modes. Calculations give a
monotonic shift of the dominate peak in the high-frequency side when one
move from the weak modes to the more intensive one [167, 458], while the
experiment does not confirm such a regularity [458].

It is possible to give one more example of the sensitivity of transfer
functions to symmetry breaking in a laser. When the modes are situated
symmetrically with respect to the gain line centre and all the mode losses
are equal, then the transfer functions for symmetrical pairs of modes are
doubly degenerate (Fig. 6.1a). Introducing an extra losses in one of side
modes (in the mode with k = 2 in this case) removes the degeneration,
which results in splitting of transfer functions of modes with k = 2 and
k = 3 (Fig. 6.1b). This circumstance can be used for indication of selective
absorption in the intracavity medium.

6.1.3 Nonlinear Response of a Single-Mode Laser to Periodic Loss
Modulation
The laser response can be nonlinear even if the loss modulation is rather
weak. This follows from the preceding discussion. To clarify how the non-
linear response deviates from the linear response with an increase in the
modulation amplitude, it is reasonable to transform Eqs. (6.2) as follows.

Fig. 6.1.  Transfer functions at
symmetrical positions of laser modes
relative to the gain line centre and
equal losses (a), at the presence of
additional losses in one of modes (b)
[350]
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First, eliminating the variable n , we pass from Eqs. (6.2) to one second-
order equation
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Then, by a change of variable xemm = , where 1−= Am , we arrive at the
desired form [460]
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                              (6.31)
In the absence of loss modulation Eq. (6.31) reduces to the nonlinear os-
cillator equation
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,         (6.32)

where )1(2
1 −=Ω AG  is the frequency of the relaxation oscillations. This

equation describes anharmonic oscillations of a particle in the field with
Toda’s potential xexV x −=)(  in the presence of nonlinear damping [461,
462].

The loss modulation changes the situation in two ways. First, the term

)]cos()sin([loss ττβ Ω−ΩΩG ,

which represents the driving term, appears on the right-hand side. Second,
the last term on the left-hand side now contains an additional component

)cos(2
1loss τβ ΩΩ xe , which is responsible for the parametric excitation of

the nonlinear oscillator.
A general idea of the properties of a forced nonlinear oscillator can be

gained by defining the form of the so-called ‘skeleton curve’. This curve
is the geometrical site of the resonance contour extremes and yields the
frequency-amplitude dependence of the eigenmode of the corresponding
conservative system [463]. Thus, we substitute the solution

)cos(1 τΩ+= bax  and obtain, with the damping term neglected,
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Representing )]cos(exp[ 1 τΩb  as a Taylor expansion series, we rewrite Eq.

(6.33) in the form
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Equating the time-independent terms on the right-hand and left-hand sides
of this equation, we find
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Equating the coefficients of )cos(1 τΩb  we get
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Using (6.34) in (6.35) yields the equality
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which defines implicitly the skeleton curve )(1 Ωb .
In the limit ∞→1b  we have 0→Ω . This means that for this type of

nonlinearity the skeleton curve and, correspondingly, the resonance con-
tours of the oscillator are inclined towards the low frequency side as shown
in Fig. 6.2. The form of the resonance curve indicates that there are two
stable solutions (bistability) and that the system manifests the hysteresis
behaviour as either the frequency or the modulation index is varied. Two
branches of stable solutions exist in the domain 1Ω<Ω . These branches
radically differ from each other by the high contrast of the solutions, i.e.,
in the ratio of the maximum and minimum intensity during a modulation
period or in the difference minmax xxx −=δ .

Since Eq. (6.31) is strongly nonlinear, the system may have, besides the
main resonance, resonances on overtones and undertones of the driving
force [212]. Each of them is represented by a resonance curve like that
shown in Fig. 6.2. In order to obtain the general amplitude-frequency char-
acteristic (transfer function) of the investigated laser, one should assume
the solutions of Eq. (6.31) in the form

∑ +Ω iii kmb ϕτ)/cos[( ,

where m and k are mutually prime numbers, and make use of the harmonic
balance condition. The implementation of this program requires cumber-
some calculations even to find the skeleton curves. The only thing easy to
ascertain is that all of these curves are inclined to the low frequency side.

The anticipated form of amplitude-frequency characteristic is illustrated
in Fig. 6.3. The possible number of branches of stable solutions exceeds
two; thus the laser may exhibit multistability properties where several
branches overlap. The result, in particular, is a sophisticated pattern that
includes not one, as in Fig. 6.2, but several hysteresis loops. It should be
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emphasized that the complex profile of the potential is not the reason for
multistability in this case, since the Toda potential possesses the unique
extremum.

6.1.4 Bifurcations and Chaos
Consideration of the general properties of a nonlinear oscillator with the
Toda potential is beyond the scope of this book. We briefly discuss only
the data obtained directly in investigations of lasers. First of all, we note
that although the class B laser is described by a second-order set of equa-
tions, introducing a parameter modulation provided not simply time-de-
pendent behaviour but even chaotic behaviour. The point is that the
nonautonomous system possesses an additional degree of freedom. Actu-

Fig. 6.2. Nonlinear resonance response of the laser to harmonic loss modulation. The
dash lines show the unstable branch and the dash-dotted line indicate the skeleton curve.
The arrows mark the boundaries of the hysteresis region [460]

Fig. 6.3. Sample view of the amplitude-frequency characteristic of the system described
by Eq. (6.31) [460]
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ally, assigning ΦτΩ =  we rewrite Eqs. (6.2) in the form of the third-order
ser of equations
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τ ,  (6.37)

                            Ω=Φ
τd

d
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A three-dimensional phase space is large enough for a strange attractor
(chaos) to occur.

Particular data on lasers with modulated loss, pumping or detuning,
obtained by numerical calculations are in good agreement with those
achieved in experiments [23, 460, 464-471]. This should be clearly appar-
ent using a Nd:YAG laser as an example and comparing the calculated
(Fig. 6.4) and experimental (Fig. 6.5) results.

According to calculations, the linear response to weak sinusoidal loss
modulation (Fig. 6.4a) transforms to more complicated modulation of the
output with the harmonics of Ω, as the modulation depth increases above

003.0loss =β . In the range 018.0003.0 loss << β  the modulation of the solu-
tion remains rather shallow (Fig. 6.4b,c). At 021.0loss =β  there is jump-
like passage to short pulse generation with a pulse repetition rate Ω (Fig.
6.4d). A further increase in lossβ yields a sequence of period doubling bi-
furcations (Fig. 6.4e shows the regime with a period 2T), which leads to
chaos at 027.0loss =β  (Fig. 6.4f). At 035.0loss =β  the laser response is again
periodic but with period 4T. The abrupt passage, from chaotic to regular
pulsations, without intermediate state, with an increase in lossβ  is of par-
ticular interest. The minimum intensities between pulses are very differ-
ent in these domains.

Results of an experimental investigation of the dynamics of a Nd:YAG
ring laser are presented in Fig. 6.5. The set of parameters is about the same
as that adopted in the calculations. Unidirectional lasing was ensured by
use of a glass-based Faraday isolator with a large Verde constant. The la-
ser was 20% above threshold, corresponding to a relaxation frequency

kHz271 =ν . The modulation frequency was set in the range 8–15 kHz,
where the choice of a particular value was not crucial to the realization. A
LiNb crystal (the z-section) to which an alternating electric field applied
across the laser beam was used as a loss modulator. On comparing Figs.
6.4 and 6.5 we notice that the scenarios coincide almost in all details,
being indicative of the appropriateness of the mathematical model adopted.

These regularities fit well into the ideas developed in Section 6.1.3 and
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those based on the patterns of nonlinear resonance. Since both the experi-
ment and the calculations are performed for a fixed modulation frequency
and a varied modulation index, a family of resonance curves dependent on
β

loss
 as a parameter (Fig. 6.6) is useful for interpretation of the results. In

this figure a change in β
loss

 corresponds to passage from one resonance
curve to another. Suppose the modulation frequency Ω is set to the fixed
value less than Ω

1
 indicated by the vertical dash line. At the smallest β

loss

the oscillator nonlinearity is not apparent and, therefore, the response to
harmonic loss modulation is also harmonic. Nonlinear distortions of the
resonance smoothly grow while the operating point remains on the lower
branch of the resonance curves. Once β

loss
= β

5
 is achieved, the system jumps

over into the state on the upper branch, which is exhibited as an abrupt
transition to pulsed laser action. If β

loss
 is decreased from a value larger

than β
5
 the jump to the lower branch occurs at β

loss
 = β

3
<β

5
 (hysteresis).

Fig. 6.4. Examples of numerical solutions to Eqs (6.37): 14.0;5000;2.1 Ω=Ω== GA ;
003.0loss =β  (a); 0.01 (b); 0.015 (c); 0.018 (d); 0.021 (e); 0.027 (f); 0.035 (g) [471].
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The presence of one more abrupt transition, from chaotic to regular pulsa-
tions with a period 4T at β

loss
= 0.0355, is an indication that, besides the

main resonance shown in Fig. 6.6, there is another higher resonance at
higher amplitudes. Reproducing the whole complex structure of nonlinear
resonances by numerical integration of Eqs. (6.2) or (6.31) is rather time-
consuming. However, enough fragments have been found by this method
to confirm the conception as a whole [460].

There are others examples of numerical solutions in combination with
the experimental ones. Thorough investigations of CO

2
 laser behaviour

under periodic loss and frequency modulation are described in Refs. [468-
470], which followed the seminal paper [465]. The succession of different
regimes with an increase in the parameter modulation index differs from
Fig. 6.4 in its details but, undoubtedly, there are common features. The

Fig. 6.5. Time evolution of the travelling wave Nd:YAG ring laser output intensity for
different loss modulation indices (β

loss
 increases downwards) [471].
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Fig. 6.6. Family of resonance curves of a nonlinear oscillator dependent on β
loss

 as a
parameter [471].

CO
2
 laser exhibits both bistability and hysteresis. Bistability can be gener-

alized to cases when one of both coexisting regimes is chaotic and the
corresponding attractors in the phase space are strange attractors. It is found
that chaos is reached via a cascade of period doubling bifurcations and
escaped via an inverse cascade.

Windows of regular behaviour with a fundamental period 3T instead of
T may occur in the domain of chaotic behaviour. The situation is illus-
trated in Fig. 6.7. The diagram shows two branches of a resonance struc-
ture. On the lower branch chaos is due to the chain of bifurcations T–2T–
4T–C, while on the upper branch the succession 3T–6T–C takes place.
Thus, the window of regular response with period 3T is not inside some
domain of chaos but between the domains belonging to the different
branches. Figure 6.7 confirms that changing of regimes may occur either
in a ‘soft’ manner within one branch of a resonance structure or in a ‘hard’
manner as the result of switching from one branch to another.

Let us pay attention to one more regime, which is also shown in Fig.
6.7. It is called the attractor crisis. Without going into the details we note
that the crisis is due to the coalescence between two attractors or between
an attractor and an unstable fixed point or periodic orbit. The phenomenon
is exhibited as a sudden expansion, contraction or disappearance of the
attractors as the control parameter is varied. The behaviour of the attractor
at a crisis is displayed in Fig. 6.8. The loss modulation index is plotted on
the horizontal axis and the set of output intensities sampled at a fixed time
in every period of modulation is shown on the vertical axis. The point of
splitting of the curve corresponds to a period doubling bifurcation and the
diffuse curve corresponds to chaotic dynamics. The weak diffusion means
that although the regularity is lost, the difference in spike amplitudes and
time intervals between spikes is relatively small. The dimension of the
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strange attractor at the crisis and the resulting dispersion of the pulsation
characteristics increase until the branches overlap.

We do not claim to have explained the physical reasons for attractor
crises in this particular case, but we can point to two excitation mecha-
nisms of the Toda oscillator presented in Eq. (6.31), which may contribute

Fig. 6.7. Bifurcation diagram of a CO
2
-laser with periodic combined modulation of cavity

frequency and Q-factor [468]. Intensities sampled at time intervals equal to modulation
period (vertical axis) are displayed versus the modulation amplitude (horizontal axis).
Modulating voltage V

1
 corresponds to a bifurcation T—2T, voltage V

2
 corresponds to a

bifurcation 2T—4T, and V
3
 corresponds to a transition to chaos, and at V

5
 chaos is replaced

by period 3T pulsations, which enter, via 6T, the new domain of chaos.

Fig. 6.8. The attractor crisis phenomenon in the response of CO
2
-laser to periodic parameter

modulation [468]. Here the crisis is a boundary crisis in which the attractor suddenly
expands
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to crises. These are external forcing and parameter modulation. The sec-
ond is effective for modulation frequencies exceeding the relaxation oscil-
lation frequency. Phenomena such as attractor crises may occur when these
two mechanisms compete.

The complex dynamics of a laser subject to periodic parameter modu-
lation indicates the relationship between eigenoscillations and forced os-
cillations. Variation of the control parameter, while influencing the in-
teraction efficiency, by no means affects the properties of the relaxation
oscillations themselves. Therefore, factors such as detuning and inhomo-
geneous broadening never exert such a strong influence on the stability of
modulated lasers as they do for autonomous lasers [472].

An important circumstance for the response of a laser to internal peri-
odic modulation is the mode spectrum, since the latter defines the spec-
trum of relaxation oscillations [473, 474]. Generally, the number of de-
grees of freedom increases proportional to the number of modes only if
the mode locking is absent. For this reason, we should differentiate be-
tween the phase diagrams under periodically modulated losses with locked
and unlocked modes (Fig. 6.9). In the latter case the experimental phase
diagram displays several minima at the boundary between the domains of
chaotic and regular behaviour. The positions of these minima are identi-
fied with the fundamental relaxation oscillation frequency (70 kHz), its
subharmonic (35 kHz) and the highest frequency of antiphase relaxation
oscillations (22 kHz). The lower relaxation oscillation frequencies are to
close to each other to be distinguished in the diagram. One more minimum
is located near the second harmonic of the fundamental relaxation oscilla-
tion frequency, which is natural, given the parametric mechanism of exci-
tation of pulsations. The diagram in Fig. 6.9a shows that the domain of
chaos has a smooth boundary, which does not contain the additional relax-
ation oscillation frequencies and which does not appear near these fre-
quencies.

Both phase diagrams, presented in Fig. 6.9, were obtained in experi-
ments with Nd:YAG lasers, in which an electrooptical modulator was used
for low-frequency loss modulation. Active mode locking was provided in
the first case as well. The number of modes excited in the experiment is
estimated to be 10–15.

The attractor dimensions, found by processing of both the experimen-
tal results [23,469,470] and the numerical simulations [474,475], are rather
low. Only in one case, which identified with a five-mode model, the fractal
dimension is slightly larger than 3 when the laser response to modulation
is chaotic. For all the chaotic regimes of a single-mode laser the integer
part of the attractor dimension does not exceed 2.
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6.2 Monotonic Adiabatic Variation of Parameters

The premises developed in this section are directly related to the theory of
spectrally swept lasers they are a key to explaining the spontaneous pulsa-
tions of solid-state lasers and they are useful in the analysis of the condi-
tion for giant pulse formation. Our discussions are based on Refs. [24,
476, 477].

6.2.1 Sweeping of the Losses
Without specifying the loss variation method and the form of the loss modula-
tion we can write the set of equations

  )](1[
d

d τβ
τ

−−= nGm
m

, (6.38a)
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d

d +−= mnA
n

τ . (6.38b)

Our interest is in the case of losses, which diminish with time,
0/dd <= βτβ � , since it offers richer laser dynamics.

To find the characteristics of a quasistationary regime, at which the
amplitude adiabatically follows the varied losses, we assume 0=m�  as a
first-order approximation. Hence, the quantity

              β+=1~n (6.39)

is varied during the lasing at a rate
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Fig. 6.9. Experimental phase diagrams of a periodically modulated multimode Nd:YAG-
laser in the control parameter space (modulation frequency ν

mod
, modulator driving voltage

amplitude U
mod

) (a) with and (b) without mode locking [474].
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Putting Eq. (6.40) into Eq. (6.38b) leads to the following expression for
laser intensity:
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m . (6.41)

The next level of approximation provides a correction to the inversion,
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It is useful to introduce the notion of slow and fast sweep rates with the
boundary between them specified by

       ββ −−= 1f-s A� . (6.43)

In the domain of slow sweeping, |1| −<< Aβ� , the laser dynamics is fully
determined by the pumping rate. In the domain of fast sweeping,

|1| −>> Aβ� , the rate, at which the losses are decreased, is of primary im-
portance. Correspondingly
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We now linearize Eqs. (6.38) in the vicinity of the quasistationary val-
ues nm ~,~  and obtain a generalization characteristic equation (3.16) for the
present case of adiabatically varied losses. The roots of this equation for
G>>1 have the form
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At slow sweep rates, the expressions for the frequency and damping of
relaxation oscillations look like those for the autonomous model:
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while for fast sweep rates,

     
)1(2

,|| 11 β
βθβ
+

−==Ω
�

�G . (6.46b)

For the linearly decreasing losses (as τββ sw0 u−= ,  where
constsw =−= uβ� ), the results are the simplest. The dependence )(~ τm , ex-

pressed by Eq. (6.41), is shown by a solid line in Fig. 6.10 (curve 2). It is
important to note that the curve )(~ τm  begins at 0sw >u  at the point with
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coordinates

AumuA /~,/)1( swthrsw0thr =−+= βτ .

Therefore, the initial (fluctuation) intensity, when the laser threshold is
crossed, is markedly different from the quasi-equilibrium value

Aum /~
swthr =  at the threshold, which means that transient pulsations will

necessarily occur. The oscillatory process calculated by Eqs. (6.38) with
the initial conditions

AumA /)0(,1)0( sw<<−>β
is also presented in Fig. 6.10 (curve 3).

We would like to draw attention to a feature of the lasing process shown
by curve 3. The delay of laser action with respect to the moment at which
the self-excitation boundary is crossed is exactly the same as τ

thr
, the time

from the start of sweeping to the moment at which the laser threshold is
crossed. This remarkable feature was ascertained in Ref. [476] for a class
A laser with an aperiodic transient; however, this property is retained for
other classes of lasers as well.

Information on the first spike after the laser threshold is passed can be
obtained in a fashion similar to that used in Section 3.2.2. Disregarding
the change of the inversion in the linear regime we have, by virtue of

01 0 =−− βA ,

          τ
τ swd

d
Gmu

m = . (6.47)

Knowing the solution of the above equation

Fig. 6.10. Time dependence of (1) steady-state intensity, (2) quasi-steady-state intensity
and (3) intensity that occurred in numerical simulation of Eqs. (6.38) during the uniform
diminishing of cavity losses.

m, arb. units
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where linτ  is the time the laser intensity reaches a quasistationary value
m~ . Since linswτu  plays the role of maxη , we have, by analogy with (3.33),
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~
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m
um = . (6.49)

According to (6.41), the quantity m~  depends on sweeping rate but this
does not lead to considerable deviations from the proportionality between

maxm  and swu  in (6.49).
Consider now the following adiabatic criterion, which, according to

[478], is expressed by the inequality
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τ
βτ +<<1

d

d
0 . (6.50)

We use 0τ  to denote the period of the slowest eigenoscillations, specifi-
cally the relaxation oscillations. Thus, the inequality (6.50) can be rewrit-
ten as

       )1(1sw β+Ω<<u . (6.51)

Using Ω
1
 as defined in (6.46b), we find the final form of the adiabatic

following criterion

        2
sw )1( β+<<Gu . (6.52)

Recalling inequality (6.42) and assuming Au >>−= β�sw , we see that this
inequality is identical to (6.52).

Under the free running operation conditions, the mode sweeping through
the occasional selection band of the resonator is the most probable. Then
the losses are varied as

      )](1[)( 0 τβτβ g−= , (6.53)

where )1/(1 2
sel∆+=g  and the time dependence is due to the fact that

τ
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Equations (6.40)–(6.46) are still valid bearing in mind that
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sw00 ugg ′=−= βββ �� ,
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and in the fast sweeping domain
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For all these reasons, when the mode involved in the lasing process is
swept through the selector band, an oscillatory transient process is ex-
cited. The selection depth restricts the limiting amplitude of the popula-
tion difference oscillations: 0max βη < . This amplitude will be reached if
the mode is retuned into selection band halfwidth during the linear stage
of lasing. In order to estimate the amplitude of the first spike, we make use
of the expansion
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Using it in Eq. (6.38a) and bearing in mind that 0)]0(1[1 0 =−−− gA β  we
find
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d
ugGm

m ′= , (6.58)

so that by analogy with Eqs. (6.47)–(6.49) we can write
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For the first spike of the transient to develop, the duration of the linear
stage should not exceed the residence time of the mode in the selector
band: linsw /1 τ<u  or, according to Eq. (6.59),
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0
sw mm
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u

′
< β

.

On the other hand, the pulsation intensity will be greater than in a laser
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with fixed tuning when the pumping is switched on only if the sweeping
rate is high enough:
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is the quantity of order of unity. This inequality follows from the compari-
son of Eq. (6.60) and Eq. (4.20). The necessary condition for occurrence
of intense pulsations is given by

       )1(
)/~ln()1(2

2
min

0 Ο
′

−>
gG
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Assigning 510,10 == GA  and assuming 25)/~ln(,5.0 min ==′ mmg , we find
that the necessary condition (6.62) takes the form 1.00 =β .

The limit on the sweeping rate in the dimensional notations can be re-
written as
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Substituting these values, as well as 3 1 1
|| 10 s , 0.1 cmsel

− −= =γ δν  yields
s/cm102 -12

sw µ−⋅>U .

6.2.2 Sweeping of Detuning
For this discussion Eqs. (6.1) are now the reference equations, but the
problem is in that )(00 τ∆=∆ . The sequence of operations for analysis is
very similar to those used in Section 6.2.1, so that no additional comments
are needed.

Assuming in the first-order approximation 0/dd =τm  we find the
quasistationary value of inversion

    
L

n ~
1= , (6.63)

which is varied during lasing at the rate

             sw2~

~

d
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L
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where τ/dd 0sw ∆=u  is the dimensionless rate of the detuning sweeping.
Substituting Eq. (6.64) into Eq. (6.1a) leads to the expression for intensity
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swuLLLAm 21 ~~~~ −− ′+−= . (6.65)

Higher order corrections are, as previously, small if the sweeping rate is
within the framework stipulated by the adiabatic following criterion.

Expression (6.65) shows that there are domains of fast and slow sweep-
ing in the parameter plane ( 0, ∆swu ), which are separated by the line
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In the domain of slow sweeping the laser dynamics is determined by the
pumping, while in the domain of fast sweeping it depends on the mode
frequency movement towards the gain line centre (only this case is consid-
ered). The domains of fast and slow sweeping correspond to different la-
ser intensities
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Linearizing Eqs. (6.1) in the vicinity of the values nm ~,~  we arrive at a
quadratic characteristic equation with the roots
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In the domain of fast sweeping Eq. (6.68) transforms to
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The adiabatic following criterion is written as
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Remembering that swuL/dLd '
~~ =τ  we rewrite Eq. (6.70) as
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In the domain of fast sweeping
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Comparing Eq. (6.72) with Eq. (6.66) it is easy seen that f-s
sw

cr
sw uu >>  pro-

vided G>>1. Thus, the adiabatic theory applies to solid-state lasers in the
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whole domain of slow sweeping and in part of the domain of fast sweep-
ing. Given in natural dimension the relation (6.72) becomes
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The excitation of a mode by dynamical tuning of the mode frequency
will necessarily be accompanied by the growth of pulsations. This is be-
cause 1

~ =LA  at the laser threshold, and the threshold point lies at the bound-
ary of the fast sweeping domain according to Eq. (6.66). As in the case of
swept loss the quasistationary intensity at the time the laser threshold is
passed has a finite value defined by Eq. (6.67), while mm ~)( thr <<∆ .

Assuming that the period of the excited pulsations is much shorter than
the time the mode is above the laser threshold we can make use of the
expansion
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During the linear stage of the spike Eq. (6.1a) can be written, in view of
Eq. (6.74), as
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By analogy with Section 6.2.1, we find the maximum excess of the unsat-
urated gain above the threshold value that is achievable in the sweeping
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The spike amplitude can be determined by using conservative approxima-
tion equations, which only differ from Eq. (3.31) in that m is replaced by

Lm
~

. Similar to Eqs. (3.33) and (6.62), for the spike amplitude we have
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Comparison of this value with the amplitude of the first spike, which is
formed in a laser with fixed tuning when the pumping is switched on [see
(3.33)], shows that the former is greater for
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where O(1) is the quantity of order of unity. In unnormalized units, the in-
equality (6.77) has the form
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Assigning 10,cm6,s10 -1
0

-13
|| === − Aδνµγ  and 5.0|| 0 =∆  we obtain

s/cm1.0 -1
sw µ>U .

6.3 Mechanisms of Undamped Pulsations in Solid-State Free-
Running Lasers

In previous sections of this chapter we have considered two processes ca-
pable of destabilizing laser operation: weak periodic modulation of the
parameters and their monotonous variation, owing to which one or more
modes reach a threshold and begin to oscillate. The models for both pro-
cesses are in excellent agreement with experiments. Laser dynamics with
periodic loss modulation was investigated, for example, in the early pa-
pers [479-482]. Nevertheless, there are no controlled variations of the la-
ser parameters in a free-running laser so we must consider the effects of
parasitic modulation.

The hypothesis that the laser parameters were time dependent was first
used to explain the spiking of two-level paramagnetic masers [234, 289].
The idea that the pulsations in solid-state lasers are due to the technical
fluctuations was put forward in [483]. However, the assumption that a domi-
nant role is played by inversion fluctuations produced by the pumping has
not been confirmed in practice. Another approach, which relates cavity
loss modulation to random cavity mirror displacements and to temperature
variations, proves to be more realistic.

6.3.1 Origin of the Pulsations of a Two-Level Paramagnetic Maser
The specific feature of such a maser is that the pumping and the emission
do not coincide in time. This predetermines the short duration of the emis-
sion stage. Analysis of the experimental data given in [484–488] shows
the following features of the process;

– the amplitude of the maser output signal oscillates in time;
– the emission duration noticeably exceeds the relaxation times T

2
 and T

c
;

– when the emission is over, the active medium remains in the inverted
state and can be used for the amplification.

The attempts to explain the spiking phenomenon in terms of autono-
mous maser theory have been a failure. These approach attribute the ma-
ser pulsations to magnetization nutation of the sample [489–492], but it is
unclear why the pulse duration could then greatly exceed the relaxation
times of the magnetization and of the field and how the atomic system
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could remain in the inverted state when emission is over.
All these features will find a natural explanation if we bear in mind the

nonautonomous nature of the maser inherent in the method of the adia-
batic rapid passage of the resonance, which is used for the production of
the inversion [493]. Initially, the sample is placed in a magnetic field cor-
responding to a large detuning between the paramagnetic resonance and
the pumping source frequencies. Thereafter the magnetic field is varied
monotonically, so that these frequencies converge until they reach coinci-
dence and than they diverge to a distant exceeding the paramagnetic reso-
nance linewidth. If this process takes a time less than the relaxation times
but is adiabatic, then population inversion, or reversal of magnetization, is
achieved after the resonance passage.

On completing of the adiabatic rapid passage of the resonance the pump-
ing source is switched off. The magnetic field then must be changed in the
opposite way, since the frequencies ω

0
 and ω

c
 need to be matched. For this

reason, the induced emission process occurs under the conditions of sweep-
ing of the detuning. Experiment showed [494] that the sweeping rate of
the magnetic field influences the form of the output signal.

When choosing the model it should be borne in mind that paramagnetic
substances with large relaxation times were used in masers and rather of-
ten, the relation κγ >>⊥  is not satisfied. Therefore, we should use Eqs.
(3.81) as the reference point. Analysis is simplified by the fact that the
emission stage takes a time much shorter than T

1
, thus making it possible

to neglect the population relaxation of the working levels. For the same
reason, it is convenient to renormalize the field and polarization (magneti-
zation) variables as FFm

2/1~γ=  and PPm
2/1~γ= . Thus, Eqs. (3.81) trans-

form to
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Figure 6.11 shows the results of numerical simulations of the processes in
such a maser for linear sweeping of the detuning τswc0 )0( u−∆=∆ , where

τωγ /dd 0
2

sw
−
⊥=u . The solution for the field has the form of the succession
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of isolate spikes. Each spike is accompanied by a relatively large reduc-
tion in inversion. Meanwhile, each new spike is emitted of conditions of
noticeable excess above the laser threshold. The sweep rates adopted in
these calculations and those corresponding to the experimental values are
almost the same as the critical rate of the adiabatic retuning LLu ′= ~

/
~~cr

sw κ ,
which is of order of unity in this particular case.

In the experiment the formation of isolated spikes by two-level para-
magnetic masers was observed only once [487]. In other cases the signal
had the form of single pulse with oscillating tail. This form of emission
can be explained by the inhomogeneous line broadening of paramagnetic
resonance under the real experimental conditions. Only those paramag-
netic ions participate in generation at a particular moment, which have
their transition frequencies close to ω

c
 at that time. They give way to other

ions as sweeping proceeds. In this respect, the analogy between sweeping
and pumping is apparent.

Under the condition of inhomogeneous broadening the population dif-
ference is a function of the variables τ and ∆

0
, owing to which

0
swd

d

∆∂
∂+

∂
∂= n

u
nn

ττ . (6.80)

Substituting Eq. (6.80) into Eq. (6.79) we notice that the term 0sw / ∆∂∂nu
is similar to A–n in Eq. (6.1b). In the most crude approximation

Fig. 6.11. Examples of the numerical solutions of the equations of a two-level paramagnetic
maser (6.79). The initial inversion n(0) = 10; the sweeping rates u

sw
 = 0.01 (a), 0.25 (b).

a b
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nnn −≈∆∂∂ 00/ , where n
0
 is initial value of n. We, therefore, have, instead

of (6.79c)
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0eff mm PFnn

n γ
τ .

The additional term takes into account the ‘pumping’ due to the sweeping
and sw0

2
eff /dd~ ut == −

⊥ ωγγ .
The problem is reduced, as in the case of monotonically varied param-

eter, to analysis of the transient processes in the equivalent generator with
continuous pumping. For the case κγ >>⊥  such an analysis was performed
in Section 6.2. The properties of the emission process are in qualitative
agreement with the experimental data. All features of the paramagnetic
masers mentioned above find a natural explanation. The damping rate and
frequency of pulsations are defined by the sweeping rate.

Nowadays two-level paramagnetic masers are of purely historical in-
terest. Nevertheless, the search for understanding of the origin of their
pulsations was an essential motive in the development of the theory of
laser dynamics. It is both of fundamental importance and rather great irony
that the maser pulsations were of technical rather than a natural autono-
mous origin.

6.3.2 Laser Parameter Oscillations Under Free-Running Conditions
We have established that periodic modulation of the cavity is an effective
way to excite laser pulsations, especially by modulation on frequencies
near the relaxation oscillation frequencies. We now demonstrate that simi-
lar modulations leading to intensity pulsations can be caused by uncon-
trolled monotonic variations of the cavity geometry or of the laser rod
temperature.

Consider first a laser rod, which has its end surfaces parallel to the
cavity mirrors. The collection of a several parallel partially reflecting sur-
faces can be treated as a set of coupled cavities. Displacement of one bound-
ary with respect to the others (Fig. 6.12) modifies the system and influ-
ences, in particular, its losses. The position of the ends of the laser rod is

Fig. 6.12. Scheme of composite laser cavity with a moving interface.
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also important to the electromagnetic field energy distribution among the
sections of the cavity occupied by the laser medium and those, which is
vacant [495]. Since all positions of the rod ends, differing by integral num-
ber of half wavelengths, are equivalent, uniform translational motion of
the rod along the cavity axis produces periodic oscillations of the cavity Q
and filling factors with a period T = λ/2V

refl
, where V

refl
 is the velocity of

the reflecting boundary.
Loss modulation from translational motion of a boundary in a compos-

ite cavity can also be treated as the result of the Doppler frequency shift as
the wave is reflected at this boundary. If the laser rod moves and the mir-
rors are fixed, then the cavity eigenfrequencies can be assumed to be con-
stant. The wave reflected from the end of the moving rod acquires the
Doppler shift cV /2 reflD ωω =∆  with respect to the transmitted wave. Thus,
besides the wave of frequency ω, there are also waves with shifted fre-
quencies Dωω ∆±  in the cavity. The amplitudes of the Doppler shifted
components are defined by the reflections of the inner boundaries and by
reflected wave interference conditions if there are several moving bound-
aries. With the Doppler components taken into account, the laser equation
reduce to the form (6.2), where ||D /γω∆=Ω , and lossβ  can exceed the
Fresnel reflectivity.

Doppler modulation also occurs if the laser rod is motionless and the
cavity mirror is moved. This version features time-dependent cavity
eigenfrequencies, which follow the mirror motion.

The loss modulation frequency (Doppler shift) becomes resonant for
the translational motion of one reflecting boundary, 1||D / Ω=∆ γω , pro-
vided

        )1(2)4/( ||1refl −== AVV κγπλ . (6.81)
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In ordinary laser operation the motion of the reflecting surfaces is purely
accidental. The external kicks of the laser components produce
microvibrations. The velocity of any vibrating element surface does not
remain constant, of course, but if it is close to resonance velocity for a
short time, then intense pulsations may hold up.

According to measurements reported in [496], he instantaneous veloc-
ity of a vibrating mirror reaches 0.2 cm/s. This value is somewhat lower
than the estimates of resonance velocities, which require higher amplitude
vibrations. The experiment with Nd:YAG laser has shown that a several
fold increase in the vibration amplitude leads to a sharp enhancement of
the pulsations.

Periodic modulation of the cavity Q-factor also occurs during mono-
tonic variation of the temperature of the laser rod, since both the refractive
index η and the optical length ηaeff LL =  are temperature dependent. Equat-
ing the effective velocity of cavity lengthening tLtLV /dd/dd effeffeff η==  to
the value V

1
 introduced above we find the heating rate, which cause the

resonance modulation of cavity losses:
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Using in (6.82) the values cm/s1cm,10 1a == VL  and -15 K105.1/dd −⋅=Tη ,
which correspond to ruby [497], we find K/s10)/dd( 4

1 =tT . Heating rates such
as this are quite realistic in a ruby laser pumped by a flash lamp.

The build-up of large-amplitude pulsations from the resonant perturba-
tions requires that the loss modulation index satisfy the inequality

cr
lossloss ββ ≥ , which is the inverse of Eq. (6.9). In the absence of an antire-

flection coating, the reflectivity of the ends of the laser rod is few percent.
The kinematic or temperature loss modulation index has the same order of
magnitude and is therefore well over cr

lossβ .
The simplest and most effective method of weakening the parasitic

modulation of the cavity Q-factor is to tilt the laser rod ends in combina-
tion with applying antireflection coatings. At the angles of incidence ex-
ceeding the beam divergence, the waves reflected at the rod ends are com-
pletely removed from the cavity and the lost power is independent of the
laser rod position. If the Gaussian beam of radius a

0
 is generated, then this

criterion can be written as [1]

     )2/( 01incl aπλϑϑ => . (6.83)

6.3.3 Instabilities Due to Sweeping of the Cavity Eigenfrequency
A tilted laser rod may function as an interferometric longitudinal mode
selector, the properties of which depend on inclϑ  and effL . The variation of
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the refractive index with heating causes the transmission maxima to move
with respect to the cavity eigenfrequencies. Mirror vibration sweeps the
cavity mode spectrum across the selector passband. However, the tilted
laser rod ceases to operate as an interferometer if

     eff02incl / La=>ϑϑ . (6.84)

As a rule 1/ a
2
0 >>La λ , owing to which 12 ϑϑ >> .

When inequality (6.84) is satisfied, neither mechanical vibrations nor
heating of the laser elements leads to Q-modulation. Q-modulation is also
absent in a laser with mirrors at the rod ends. In all these cases only the
mechanisms, which sweep the mode spectrum with respect to the gain line
continue to perturb the laser action. Let us make estimates of them using
the expression for the longitudinal mode frequency )2/( effLqq =ν , where

λ/2 effLq =  is an integer and aeff )1( LLL −+= η . The cavity tuning rate is
given by

t

L

Lt
U

d

d1

d

d
eff

eff

q
sw λ

ν
−== . (6.85)

t

L

Lt
U

d

d1

d

d
eff

eff

q
sw λ

ν
−== . (6.85)

If the cavity is tuned by moving the mirror, then refleff /dd VtL =  and Eq.
(6.85) can be rewritten as

          sweffrefl ULV λ= . (6.86)

The condition of excitation of intense pulsations is represented by inequality
(6.78). As applied to a ruby laser (λ = 7·10–5 cm, L

eff
 = 100 cm, U

sw
 > 10–2

cm–1/µs) Eq. (6.86) yields cm/s100refl >V . This value greatly exceeds the
resonance velocity V

1
 found previously and, of course, it is not achieved in

a free-running operation.
Let us estimate the rate of heating of the laser rod, which corresponds

to the critical tuning rate. Using the Eq. (6.82), which relates the rod heat-
ing rate to the tuning rate,
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and inequality (6.78), we arrive at the condition for excitation of intense
pulsations in a ruby laser: K/s10/dd 5>tT , assuming ηaeff LL = =10 cm. This
value slightly exceeds the ruby heating rate under the flash lamp pumping
conditions.

The temperature of the rod influences both the refractive index of its
host and the position of spectral lines of impurity ions. The temperature
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line drift velocity
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depends on the parameter 0/dd νT , which is equal to 8 K/cm–1 for ruby at
room temperature [497]. According to Eq. (6.78) the critical drift velocity
corresponds to a heating rate of 510/dd ≈tT  K/s. Hence, it can be con-
cluded that temperature drift should not lead to intense pulsations of solid-
state lasers. However, more moderate amplitude pulsations can be excited
in this manner. This conclusion agrees with the results of numerical inves-
tigations of a two-mode model, given in Ref. [498], where such a drift
mechanism of spiking was proposed.

In a multimode laser, the change of modes can occur against the back-
ground of uninterrupted lasing. Therefore, the transient process, which
appear each time a new mode begins to oscillate, are superimposed on
each other. On the whole, the time-dependent laser action is seen as un-
damped although it consists of a series of damped transient pulsations.
Numerical simulations that confirm these premises were performed in [496,
499] on the basis of the multimode rate equations.

6.3.4 Role of Spatial Effects
In Section 4.1.3 we gave the proof of the theorem that regardless of the
number of modes the set of rate equations has a unique steady-state solu-
tion, which is globally stable. This means that spatial inhomogeneity of
the inversion by itself cannot be the reason for undamped laser pulsations.
However, small-scale structure on the order of the wavelength, which is
due to nonuniform saturation of the laser medium by the radiated field,
does increase the sensitivity of the laser to perturbations. Using enormous
experimental data, partly given in Chapter 1, it has been shown that spik-
ing regimes, especially irregular ones, are associated, as a rule, with a
small number of modes excited simultaneously. Any measures, which re-
duce the nonuniform dynamical saturation of the laser medium, contribute
to stabilization of the laser operation. Using these premises we can assert
that criteria like Eq. (6.78), which take into account mode discrimination
based on mode detuning from the line centre, give only an upper limit on
the critical rates of laser tuning that lead to instabilities. Under real condi-
tions, spatial inhomogeneities can noticeably decrease the critical veloc-
ity.

These ideas on the origin of spiking are in full accord with the experi-
mental results for Nd:YAG lasers. Measures such as the increase of the
construction rigidity, stabilization of the temperature, inclination of the
ends of the laser rod and giving them an antireflection coating completely
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eliminate spiking. In ruby lasers measures aimed at smoothing out the lon-
gitudinal inhomogeneity of the inversion have also been added and con-
tribute to added stability. experimental details, which demonstrate these
results, where given in Section 1.2.3.

However, the reasons for the pulsations of a solid-state laser are not
limited to parameter instabilities. Another cause of instabilities can be the
nonlinearity of the laser rod host, which is discussed in the next Chapter.
The reasons for spiking in semiconductor lasers are similar.

It should be noted that the acuteness of the problem of spiking regimes
has become a thing of the past, along with the lasers of first generation.
Modern sources of optical pumping for solid-state lasers, in contrast to
flash lamps, have narrow radiation spectra matched to the absorption lines
of active elements. Therefore, they do not create excessive thermal and
mechanical tensions, which is peculiar to the flash lamps. Thus, the rea-
sons of intense technical fluctuations of parameters, which lead to spik-
ing, are eliminated.
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Chapter 7

Lasers with Nonlinear Parameters
In addition to active parameter modulation discussed in the previous chap-
ter there is another effective method of influencing the laser dynamics.
This method is based on the use of elements with the optical properties,
which change depending on intensity of the light illuminating them. Such
elements can be responsible for a dependence of the cavity Q-factor on he
laser output or, equivalently, they execute what is called ‘passive Q-switch-
ing’. The decrease of losses with increasing power reduces the laser sta-
bility threshold and enhanced pulsations. On the contrary, the increase of
losses with increasing power leads to more stable laser behaviour. For ex-
ample, the oscillatory transient can be transformed to aperiodic one.

Sometimes, the nonlinearity of the media filling the laser cavity has
greater influence on the laser dynamics than the time dependence of the
parameters. This has been used to explain, for example, the undamped
spiking of a neodymium glass laser, which depends on the spectral compo-
sition of pumping. In semiconductor lasers thermal and mechanical insta-
bilities of parameters have little influence on the laser dynamics, so that
material nonlinearities are the only possible cause of the frequently ob-
served fast pulsations.

7.1 Laser with an Opto-Electronic Feedback

Automatic control of cavity losses was first used to remove spikes in a
ruby laser [500–503]. An electrooptic Kerr cell in combination with a po-
larizer served as the control element. The control voltage applied to the
cell electrodes was the amplified signal from a photocell that intercepted
part of the laser output power. The control voltage was added to a D.C.
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bias that was used to define the position of the operation point on the
modulator characteristic.

The chain ‘photocell–amplifier–device controlling the cavity Q-factor
or pumping power’ has been given the name ‘opto-electronic feedback’
(earlier the term ‘external additional feedback’ was used). Depending on
the sign of the control voltage the additional feedback can be either posi-
tive (the cavity losses decrease with an increase in the output power). For
negative feedback without delay the emitted power is stabilized. However,
if the negative feedback is delayed this situation can lead to enhancement
of the pulsations. Undamped pulsations are also enhanced in a laser with
positive feedback [502].

Opto-electronic feedback (by control of the injection current) is also
used in semiconductor lasers to influence the laser behaviour [504].

7.1.1 Single-Mode Laser with Self-Controlling of the Cavity Losses
To model these phenomena we turn again to the rate equations for class B
lasers. The dependence of the cavity losses on laser power can be written
conveniently as )](1[0 mβκκ +=  assuming 0)( ≥mβ . Generalization of the
rate equations (12.1) to the case considered [451, 502] yields

)](1[
d

d
mnGm

m β
τ

−−= , (7.1a)

)]1(
d

d +−= mnA
n

τ . (7.1b)

The total number of fixed points of Eqs. (7.1) depends on the function
)(mβ . One of these points ( 0, == mAn ) is trivial. Its instability occurs

when the self-excitation condition

     )0(1 β+>A (7.2)

is met. The coordinates of the remaining fixed points ( nm , ) can be found

by solving the set of algebraic equations

      )(1 mn β+= , (7.3a)

     )1/( += mAn . (7.3b)

When Eqs. (7.1) are linearized in the vicinity of a nontrivial fixed point
they take the form

)(
d

)d(
mnmG

m δβδ
τ

δ ′−= , (7.4a)

))1(
d

)d(
nmn

n δ
τ
δ +−= , (7.4b)
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where mnnnmmm /dd,, ββδδ =′−=−=  and the derivative is taken in the
point mm = . Eqs. (7.4) have characteristic roots

     [ ]nmmGmmGmmG +′+−++′±++′−= βββλ )1()1(
4

1
)1(

2

1 2
2,1 .

                                                                                                         (7.5)
Nonoscillatory transients take place if the fixed point is a stable node

(i.e., the characteristic roots are real and negative). Since G>>1, the condi-
tion for the real form of roots can be reduced to nmGmG 4)( 2 >′β . The
roots will be negative if 0>′β . Combining the two inequalities yields

           
mG

n
2>′β , (7.6)

on condition that the fixed point under investigation is a stable node.
In a laser, in which condition (7.6) is met, the losses increase with in-

creasing power (i.e., the additional feedback is negative). The phase por-
trait of such a laser system is presented in Fig. 7.1.

To find the steady-state values of the laser intensity and inversion one
should know the form of the function )(mβ . If we do not go beyond the
limits of inequality 1|| <<′β , which does not contradict Eq. (7.6), then its
difference from Eq. (12.2) is expressed by a small term of order β ′ . In this
case

1;1 ≈−≈ nAm
and the condition for the absence of pulsing (7.6) transforms to

1
cr )]1([2 −−=′>′ AGββ . (7.7)

In lasers with positive external feedback the forms of the behaviour are
more diversified. If there is no delay in the reduction of cavity losses with

Fig. 7.1. Phase portrait of a laser with additional negative feedback. The dashed lines are
the isoclinic ones n = 1+ β(m) with horizontal and m = A/n–1 with vertical tangents.
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the growth of intensity, the stability of the fixed points decreases. If this
solution is stable it corresponds to a fixed point of a focus type. To make
the focus unstable one has to make the feedback stronger by requiring

   01 <++′ mmG β . (7.8)

This implies the necessary condition 0<′β . The unstable focus is enclosed
be a stable limit cycle (Fig. 7.2a).

It should be noted that the self-excitation condition (7.2) is fulfilled if
there is one or any arbitrary odd number of fixed points in the upper half-
plane. Things are different if the number of fixed points in the upper half-
plane is even. Then the inequality (7.2) remains unsatisfied and lasing can
be initiated only with a strong perturbation (hard excitation), by external
signal injection, for example. We restrict ourselves to discussing the prop-
erties of a system with two nontrivial equilibrium positions.

Fig. 7.2. Versions of the phase portraits of a laser with additional positive feedback. The
fatty lines mark the specific trajectories (limiting cycles and separatrices): (a) system with
soft excitation; (b) system with hard excitation and a stable fixed point; (c) system without
stable nonzero fixed points but having a stable limiting cycle; (d) system having neither
stable nontrivial fixed points nor stable cycles.
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It is easy to ascertain the type of each fixed point. Point a is a stable
node. At point c the characteristic roots (7.5) are real and opposite in sign,
which is indicative of a saddle. All that was said above about the type of
fixed point b and its stability remains valid. The phase portrait for the case
where b is a stable focus is presented in Fig. 7.2b. One separatrix leaves
the saddle and tends to point  and the other tends to point a. When point b
is unstable the system has a limit cycle. The stability of the cycle is de-
fined by the sign of the expression

           ),(),(0 ccnccm nmQnmP ′+′=σ , (7.9)

in which ),( cc nmP  and ),( cc nmQ  stand for the right-hand sides of Eqs.
(7.1). The prime means the differentiation with respect to the variable in-
dicated by the subscript. According to [211] the limit cycle is stable if

00 <σ .
Substituting the right-hand side of Eqs. (7.1) into Eq. (7.9) we find

]1)([0 ++′−= ccc mmmG βσ .

The stability of the cycle depends on the values that cm  and )( cmβ ′  as-
sume. The only indisputable fact is that the limit cycle is stable for small

cm . The phase portrait of a laser with hard excitation and a stable limit
cycle is given in Fig. 7.2c. The separatrix, which tends toward point b in
Fig. 7.2b, has the cycle as a limit. The phase portrait of a system without a
stable limit cycle and without a stable fixed point in the upper half-plane
is shown in Fig. 7.2d. All the nonfixed phase space trajectories end at
point a. This implies that sustained laser operation is impossible, since
even if lasing is initiating by an external signal, the laser will emit a pow-
erful pulse and return permanently to the state of no output.

7.1.2 Multimode Laser with Selective and Combined Feedback
The method of the opto-electronic feedback has found further develop-
ment in the systems with the selective and combined derivative feedback.
The fact that the control of laser parameters is achieved using the deriva-
tive of the output signal makes it easier to perform analysis because, chang-
ing the topology of the phase space in the vicinity of the fixed points, such
a feedback does not change the position of these points. But what is most
interesting is the possibility of selective influence on the laser behaviour
using the selected mode. The selective feedback can be combined with the
feedback proportional to the total output intensity. The advantages of such
a system are illustrated by an example of combining the negative feedback
through the total intensity with the positive selective feedback, considered
below [167].

The idea of a laser with the combined feedback can be seen in the sim-
plified scheme presented in Fig. 7.3. A Nd:YAG crystal is pumped along
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its axis with radiation of a diode laser. The output radiation is split into
two beams; either of them is directed on its own photodiode. However,
one of those beams has been passed previously through a Fabry–Perot in-
terferometer with the aim to separate the chosen longitudinal mode. In the
electric part of the feedback net the signals taken with a certain weight are
subtracted, with differentiation and amplification of the signal, which con-
trol the function of the laser diode supply unit and then the pumping power
of the solid-state laser.

The equations of a laser with combined feedback,

                                  [ ]kkkk
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differ from Eqs. (12.36) in the pumping parameter which looks here as
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where Y
total

 is the feedback coefficient taken on the total intensity, Y
i
 is the

feedback coefficient taken on the i-th intensity. The weak sinusoidal pump

Fig. 7.3. Experimental setup showing a multimode laser with combined feedback: 1 –
laser diode; 2 – shaping optics; 3 – polarizer (Brewster plate); 4 – diaphragm; 5 – collimating
lens; 6 – filter at 1.06 mm; 7 – half wave plate; 8 – beamsplitter; 9 – Fabry–Perot
interferometer; 10 – photodetector; 11 – derivative amplifier; 12 – power supply of laser
diode; 13 – spectrum analyzer [167].
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modulation is introduced in the last expression for obtaining the transfer
functions.

The set of equations (7.10) has been investigated by numeral methods.
The presented results are obtained neglecting the gain dispersion ( 1

~ =jL )
while all the mode discrimination refers to losses. It is assumed that extra
losses jβ  linearly increase with the mode number:

)1( −= jj ββ .

If the mode discrimination is weak, this simplification does not change
qualitatively the results.

The dependence of the decrements of relaxation oscillations on one of
the feedback coefficients (in this case this is Y

4
) when a negative value of

Y
total

 is fixed is illustrated in Fig. 7.4. The horizontal axis is divided into
three domains by two bifurcation points.

The steady state is stable in domain I. As the system approaches the
right boundary of the domain I the resonance peak at the frequency Ω

4

becomes narrower, as seen in Fig. 7.5a. All the transfer functions are nor-
malized to their maximal values and, therefore, we do not see the growth
of the peak. It should be noted that the existence of a selective positive
feedback makes the low-frequency relaxation oscillations uncompensated
and it is more convenient to detect them in the total intensity where they
are absent without the selective feedback. Effects of the peak narrowing
and increasing of its amplitude after switching the selective feedback are
observed also in the spectrum of fluctuations of the total intensity of a
Nd:YAG laser [167].

Transition in domain II is accompanied by changing of the sign of the
decrement θ

4
, which means loss of stability and rise of the regime of peri-

odic intensity oscillations at a frequency close to Ω
4
. The modulation depth

increases with increasing Y
4
 and reaches 100% close to the right boundary

of  domain II.
In domain III the in-phase relaxation oscillations at frequency Ω

1
 are

Fig. 7.4. Phase diagram of the diode-pumped laser with combined derivative feedback.
G = 7·103; A = 2; β = 0.03; Y

total
 = – 0.005 [167].
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also undamped and in the heart of this domain oscillations become cha-
otic. So, with increasing of the coefficient of the selective feedback Y

4
 the

following scenario is realized in the system: subcritical Hopf bifurcation –
regular oscillations – transition to chaos through quasiperiodicity.

The position of the bifurcation points depends on the chosen value of
the feedback parameter Y

total
. If Y

total 
= 0, then domain II is absent; the

growth and narrowing of the resonance peak takes place only when Y
4
 is

small. Further increasing of Y
4
 leads to a simultaneous excitation of un-

damped pulsations at the frequencies Ω
4
 and Ω

1
. In this case a different

scenario is realized, according to which the chaotic pulsations at the fre-
quency Ω

1
 are established just after passing the threshold of the Hopf bi-

furcation, which is now a supercritical one.
In the considered example the weakest of the excited laser modes was

chosen to realize the positive feedback. The intensity of this mode is de-
noted as m

4
. The most flexible in this case is the relaxation oscillation at

the lowest frequency Ω
4
. Switching the input of the feedback net to any

other mode m
j
 except m

1
, we pass from the relaxation oscillation Ω

4
 to Ω

j

(Fig. 7.5.b). Thus, we confirm the existence of the definite connection
between the chosen cavity mode and the concrete relaxation oscillation.

7.2 Laser with a Nonlinear Absorber

On a level with opto-electronic feedback some other methods of influenc-
ing dynamics of an autonomous laser, especially those, which use the non-
linear properties of intracavity materials, have become widespread.
Nonlinearities of different types are good for these purposes but saturable
absorbers are used most frequently.

The scheme of the laser with an extra nonlinear element is rather simple.

Fig.7.5. Transfer function K
total

 (Ω) at G = 7 · 103; A = 2; β = 0.03 for different values of
Y

total 
and Y

j
 parameters: (a) Y

total
 = –0.015, Y

1
 = Y

2
 = Y

3
 = 0, Y

4
 = 0.010 (1); 0.030 (2);

0.060 (3); 0.070 (4); (b) Y
total

 = 0; Y
j
 = 0 (1); Y

total
 = –0.015; Y

1
 = Y

3
 = Y

4
 = 0, Y

2
 = 0.039

(2); Y
total

 = –0.015; Y
1
= Y

2
 = Y

4
 = 0, Y

3
 = 0.041 (3); Y

total
 = –0.015; Y

1
 = Y

2
 = Y

3
 = 0,

Y
4
 = 0.075 (4) [167].
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Such an element (nonlinear filter) is placed coaxially with the rod inside
the laser cavity. This can reduce the laser stability, and produce nonlinear
pulsations if the density of the absorber is high enough. This effect occurs
in solid-state lasers with intracavity nonlinear filters of organic dyes [505]
and in molecular gas lasers with nonlinear absorbing gas cells [506–509].
The latter is most suitable for CW operation and, therefore, CO

2
 lasers

with various nonlinear filters have been used in a majority of experimental
investigations of complicated dynamical processes in lasers of this design
[510–521].

Stabilization of the laser power requires the use of a nonlinear element,
in which the losses grow with an increase in the laser power [505, 522,
523]. An example of such a medium is a zinc phtalocyanin solution, the
nonlinearity of which is due to the absorption from the excited state of
phtalocyanin molecules. Introducing a cell with this solution into the cav-
ity of a ruby laser leads to noticeable smoothing of the pulsations. Simul-
taneously the divergence of the laser beam is decreased and the field dis-
tribution over the beam becomes more uniform.

Nonlinear growth of the losses can also be ensured by stimulated scat-
tering or by intracavity second harmonic generation.

7.2.1 Two-Level Rate Equation Model of Laser with a Nonlinear
Filter; Steady States and Their Stability
Consider the simplest model of laser with a nonlinear filter [524,525].
Assume that the laser field is uniform both in the laser rod and in the
nonlinear cell although the field intensities in these two volumes are not
necessarily the same. The absorbing medium may have the same or the
different chemical composition as the laser medium. The only important
thing is that the transition frequencies in two media are matched and that
they can be regarded as two-level media. Fast relaxation of the polariza-
tion permit the adiabatic elimination of the corresponding variables and
use of a set of rate equations

   )1(
d

d
a −+= nnGm

m

τ , (7.11a)

      )1(
d

d +−= mnA
n

τ , (7.11b)

  )(
d

d
a

a δρδ
τ

+−= mnA
n

. (7.11c)

The quantities that refer to the nonlinear filter are marked by subscript
a. Equations (7.11) are a generalization of Eqs. (4.9). We have introduced
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dimensionless variables
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In what follows we assume that A is positive while A
a
 may have either

sign in principle.
Equations (7.11) are valid for media with either simple or complex en-

ergy structure as long as the rate at which quasiequilibrium is established
between sublevels within the energy level is high enough. This means that
rate equations such as (7.11) are useful for the analysis of the dynamical
processes in molecular gas lasers with gaseous nonlinear filters.

Equations (7.11) have three branches of steady-state solutions: the trivial
solution

a0a00 ,,0 AnAnm === (7.13)

and two nonzero-intensity branches
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The branches that correspond to the real and positive values of m  are
physically relevant. If the self-excitation condition

01a >−+ AA (7.15)

is met, i.e., the laser is subject to soft excitation, then there are two steady
states: 0m  and +m . The first is unstable while the stability of the second
requires investigation. If the inequality (7.15) is reverted then only hard
excitation is possible and there are three steady states. The domain of hard
excitation in the plane ( a, AA ) is separated from the domain in which las-
ing is impossible, by the boundary curve

               0)1(4)1(1 a

2
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 −+− AAAA
ρ
δ

ρ
δ

, (7.16)

and from the domain of soft excitation by the threshold line
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                             01a =−+ AA (7.17)

Both of these curves are shown in Fig. 7.6a. The point of their intersection has
the coordinates

                ρδ
ρδ

ρδ /1

/
,

/1

1
1a1 −

−=
−

= AA . (7.18)

Since 01 >A , from Eq. (7.18) we get a necessary condition for the existence
of a hard excitation domain

             δρ > . (7.19)

Sometimes it is more convenient to use the steady-state solutions nm ,
rather than a, AA  as the parameters. In the plane ( nm , ) the threshold line
(7.17) is given by

    ρδ /1

1
2 −

== nn , (7.20)

and the boundary curve (7.16) is

1)/1(1 −−== ρδnmm . (7.21)

Partition of the parameter plane ( nm , ) into domains with different types
of laser excitation is shown in Fig. 7.6b. The branch of steady-state solu-
tions +m  is located above and the solutions −m  below the line (7.21).
Lasing is impossible for 1<n .

Linearization of Eqs. (7.11) near any of the nontrivial fixed points leads
to a cubic characteristic equation 032

2
1

3 =+++ aaa λλλ  with coeffi-
cients

211 CCa += ,

)( 21212 DDGCCa ++= , (7.22)

)( 12213 DCDCGa += ,

where

a1121 ,,,1 nmDnmDmCmC ρδρ ==+=+= .   (7.23)

According to the Routh–Hurwitz criterion the instability of the fixed point
occurs when either of the two inequalities 0,0 3213 <−< aaaa
is satisfied. Writing them in the form

          01221 <+ DCDC , (7.24)

  0)()( 22112121 <+++ DCDCGCCCC (7.25)

and remembering that 0,0,0 121 >>> DCC , we find the necessary insta-

bility condition
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  0a <A . (7.26)

This means that only the absorbing medium can make the steady state un-
stable.

Using (7.23) and

 1a =+ nn (7.27)

inequality (7.24) is transformed to

  1mm < . (7.28)

This means that the branch −m  is absolutely unstable.
Consider now inequality (7.25). One necessary condition, under which

it is satisfied, is (7.26). The other follows from the requirement that the
sum 2211 DCDC +  should be negative. In expanded form this requirement
reads

0])1([])1([ 22 <+−++− ρδρδρρ nnm . (7.29)

The curve

   22 )1(

)1(

ρρ
ρδρδ

+−
−−=

n

n
m (7.30)

isolates the domain of absolutely stable lasing from the plane ( nm , ). For
δρ < , when only soft excitation is possible, this domain is located above

the curve (7.30). If, in addition, 1<ρδ , then the steady state is stable for
any arbitrary parameter values. In the opposite case, for δρ > , the do-

Fig. 7.6. Diagram of steady states of a laser
with a saturable absorber (a) in the
parameter plane (A, A

a
) and (b) in the plane

( mn, ): 1 – boundary line; 2 – threshold
line that separates the regions of soft (SE)
and hard (HE) excitation of laser.
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main of absolute stability is situated below the curve (7.30) but above

1mm = .
In the expanded form, the sufficient instability condition (7.25) looks

like

( ) ( ) 0)])(1(1[)1)((1 <+−++++++++ δρρδρδρ mnmnmGmmmm .

(7.31)
The curve that limits the unstable domain
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is rather complicated. However, the asymptotic behaviour for ∞→n  is
easy to ascertain. For 1>ρ  the asymptotes are the straight lines

        nGmm )1(,0 1 −== − ρρ , (7.33a)

and for 1<ρ  the asymptotes are

       )1/()1(,0 2ρρδ −−== mm , (7.33b)

When the plain ( nm , ) is mapped onto the plain ( a, AA ), the curve (7.30)
transforms onto straight line

       0a =+ AA ρδ . (7.34)

Different variants of the stability diagrams in both representations are
given in Fig. 7.7.

In the limiting cases of practical interest the general criteria of stability
can be noticeably simplified.

1. 1/ >>δρ . For the steady state the approximate expressions

       1
,1,1 a

a A-

A
nnAm

ρ
δ==−= (7.35)

are valid, which follows directly from Eq. (7.14). Inequality (7.31) with
the additional condition AA >>aρδ  takes the form

  )1(|| a −> AA
G

A
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ρ
. (7.36)

If, for example, we consider a ruby laser with a methanol solution of vanadyl
phtalocyanin as a nonlinear filter, then we have the estimates [526, 527];
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3 ≈≈= γγδ , 410≈ρ , i.e., 10/ ≈δρ . Assuming G =
105 and A = 10 we obtain the instability condition |A

a
|<10–2.

2. 1/ <<δρ . The steady-state solution is
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The steady state becomes unstable under the condition

     1
|| a −
>
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. (7.38)

Using the values 545 10,10,10 === δρG ,  which correspond to
-18

a|| s10≈γ  [528, 529], we find the density of the nonlinear filter for which
the steady state is unstable to be given by 4

a 10|| −>A .

3. 1/ ≈δρ . Here
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and, since the first term in (7.31) can be neglected, the instability criterion
is written as

AA >|| aρδ . (7.40)

Fig. 7.7. Diagrams of stability of the steady-state solutions to Eqs. (7.10): (a,d) δρ <<1 ;
(b,e) 1,1 >< ρδρ ; (c,f) δρ >  (1 – boundary line; 2 – threshold line; 3 – boundary of the
domain of absolute stability (skew hatching); 4 – boundary of the unstable region (vertical
hatching)).
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The approximate values of the roots of the characteristic equation are eas-
ily found if two of them are complex with predominantly imaginary parts.
In this case

                     233223212,1 /,)2/()( aaaiaaaa ≈±−−≈ λλ .       (7.41)

Thus, crossing the boundary 321 aaa =  means a Hopf bifurcation (of a
supercritical type).

7.2.2 Nonlinear Pulsations in a Laser with Saturable Absorber
For a single-component laser medium, the fixed points determine unam-
biguously the global structure of the phase space of the laser. Rather often
things are not so simple if a nonlinear filter is used. This can be demon-
strated using a laser system with 1/ >>δρ  as an example. The presence of
small parameters ρδ /  and G/1  make it possible to divide the solution of
Eq. (7.11) into several stages [289, 530].

The pumping stage is characterized by such low laser intensity
( ρδ /<m ) that stimulated transitions do not influence the populations of
either the laser medium or the nonlinear filter. Thus, the equations
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are valid, which follows from Eqs. (7.11) for m = 0.
The segments of phase space trajectories that correspond to the pump-

ing stage are located in the plane (n, n
a
). Their analytical expression is the

first integral of Eqs. (7.42)
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where n
1
 and n

a1
 are the initial values. Above the self-excitation boundary

(the line n+n
a
 = 1) the motion along the trajectories (7.43) is unstable.

Therefore, the segments of the curves in this domain are shown by dash
lines in Fig. 7.8.

Beyond the self-excitation boundary the laser fluctuations cause the
representative point to move to one of the trajectories going away from the
plane (n, n

a
). Nevertheless, Eqs. (7.42) and, therefore, (7.43) remain valid

until the laser intensity reaches the value ρδ /2 ≈m . This time is suffi-
cient for the inversion to grow to the value n

2
, which can be estimated

using Eq. (3.29)
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2
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The saturation stage of nonlinear filter occurs for intensities given by
δ/ρ < m < A–1. As before, the saturation of laser medium is small, such we
can assume n = n

2
, since the filter saturation stage is rather short. This

stage is described by

mn
n

nnGm
m

a
a

a2 d

d
),1(

d

d ρ
ττ

−=−+= .

Integrating these equations within the limits

aaa2,1/ nnnAm ≤≤−≤≤ρδ
we find

           
a2a2

a

a2

a )1(
1ln

Gn

A

n

n

n

n ρ−+−= , (7.45)

bearing in mind that 1/ >>δρ  and a22 1 nn −=− . The filter saturation will
be complete ( 1/ a2a <<nn ) if ||/)1( aAGA >>− ρ . This condition follows
from Eq. (7.45) and is assumed to be satisfied elsewhere below.

The high field intensity (m > A–1) and the complete saturation of the
nonlinear filter is characteristic of the emission stage. This stage is de-
scribed by a set of equations

mn
n

nGm
m −=−=

ττ d

d
),1(

d

d
,

which have the first integral

          




 −−=−

n

n
nnGmm 2

22 ln . (7.46)

Fig. 7.8. Varieties of phase trajectories at the pumping stage in a laser with saturable
absorber at (a) δ < 1; (b) δ > 1; (c) δ >> 1.
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By the end of this stage the inversion falls off to the value 3n , which can be
found by putting m

3
 = m

2
 in Eq. (7.46):

         
3

2
32 ln

n

n
nn =− . (7.47)

The value n = n
3
 is the initial inversion for the next pumping stage. Match-

ing these segments of the phase space trajectory we find the whole trajec-
tory. Projections of these trajectories onto the plane (n, n

a
) are presented

in Fig. 7.9.
We now specify the conditions for existence of trajectories that do not

tend to the time-independent solutions. Assume for simplicity that the rep-
resentative point moves along the curve (7.43) until the self-excitation
boundary is crossed. Bearing in mind that 0,1 a12a2 =−= nnn , and intro-
ducing the notation

1,1 2211 −=−= nynx
we write (7.43) as

        
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This equation transforms the points of set x
1
 to set y

2
.

Taking into account that points n
3
 and n

1
 belong to one set we write

(7.47) as

        2211 )1ln()1ln( yyxx −+=+− . (7.49)

This equation transforms the set y
2
 to set x

1
.

Eq. (7.49) is satisfied by the function )( 21 yx Φ= . Near y
2
 = 0 this function

reduces to

2
221 3

2
yyx −≈ ,

and in the limit of ∞→2y  we have 1)( 2 →Φ y . In Fig. 7.10 the function is
represented by curve 1. The function )( 21 yFx = , which satisfies (7.48),
lies in the range ||0 a2 Ay ≤≤  and ∞→)( 2yF  for || a2 Ay → . The function

)( 2yF  is monotonic under the condition 1|| a −< AAδ  (curve 2 in Fig. 7.10)
and it has the form of curve 3 with a minimum in the opposite case.

The curves )( 21 yx Φ=  and )( 21 yFx =  will intersect if their derivatives
at the origin of coordinates satisfy the inequality 22 // yFy ∂∂>∂Φ∂ , which
is equivalent to

         1||2 a −> AAδ . (7.50)

This inequality represents the desired criterion for existence of trajecto-
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ries that do not tend to the steady states. The intersection of the curves
corresponds to a closed trajectory, or a limit cycle. The fact that the se-
quence of points of set x

1
 converges to the point of intersection of the

sequence functions indicates that the limit cycle is stable. This conclusion
is illustrated by a broken dash line in Fig. 7.10, which follows the point-
to-point transformations.

An important result is that inequality (7.50) does not coincide with
(7.36). For 2ρA>G the inequality (7.36) is stronger. In the domain

          )1(
2

1
||)1( a −>>− AAAA

G
δρ

(7.51)

there is a stable limit cycle in spite of the fact that the fixed point is stable
as well. Therefore, either CW lasing or emission of isolated pulses is pos-
sible depending on the initial conditions.

In order to find the energy and temporal characteristics of the laser
pulses, one needs to solve the set of Eqs. (7.48)–(7.49). If the equilibrium
populations in the nonlinear filter are completely restored during the pe-
riod between pulses, then the approximate solution is apparent: y

2
 =A

a
.

The constraint A
2
 << 1 permits the use of Eqs. (3.33)–(3.35).

Since the limit cycle intersects the self-excitation boundary, it can be
inferred that powerful undamped pulsations are impossible in the case of
hard excitation. After the first pulse is over, the system will be below thresh-
old and return to the zero fixed point. Thus, the instability of the steady-
state solution for hard excitation (bistability) means, as a rule, that long-
term laser action is not possible at all.

Let us consider one more important situation. Assume that the nonlin-
ear filter is inertialess in the sense that ||a|| , γκγ >> . We thus can eliminate
adiabatically the variable n

a
 from the equations putting 0/dd a =τn . Eqs.

(7.11) are most greatly simplified if field intensities noticeably saturate
the filter are not achieved. The maximum field intensity is

Fig. 7.9.  The phase space trajectory
projection onto the plane (n, n

a
). The fatty

line shows the limit cycle.
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2/)~|(| 2
amax η+≈ AGm . Its smallness, compared to ρδ / , guarantees the

filter saturation. The necessary condition is

             ρ
δη

G

2~2 << , (7.52)

or, taking account of relation (3.29),

       
min

a
a

||1
ln|)|1(

m

AA
AA

−−−−>>
ρ
δ

. (7.53)

Numerically, this inequality means  δ/ρ > 25 if we use the solid-state laser
as an example. The nonlinear filter density has an upper limit due to the
condition

          ρ
δ

G
A

2
|| a << , (7.54)

which is similar to Eq. (7.52).
The smallness of the derivative and the assumption of weak saturation

of the filer make it possible to reduce (7.11) to

       







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
 −+−= mAnGm
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δ
ρ

τ
11

d

d
a , (7.55a)

                   )1(
d

d +−= mnA
n

τ . (7.55b)

These equations represent the particular case of (7.1),  where
)/1(1 a δρβ mA −−= . The criterion of instability of the steady-state solu-

tion coincides both with Eq. (7.38) and Eq. (7.8).
Partition of the phase space trajectories into segments with fast and

slow motion is the same as for the case of free oscillations. In the pumping

Fig. 7.10. Diagram explaining the conditions
for existence of a limit cycle and its finding
by the point-to-point transformations.
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stage we assume m = 0 and find

13

2 2

12 −
−−=

A

ηηη ,

where a1 An +−=η , and 1η  and 2η  are the initial and final value of η,
respectively, during the pumping stage.

During the emission stage we can neglect in Eq. (7.55b) the terms with-
out m and dividing (7.54a) by (7.54b) we arrive at a linear equation

         


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 −++= 1
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It has the first integral
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where ||)/( aAGS δρ= . During the emission stage, the initial values are n
2

and m
2
 = m

b
, which are achieved by the end of the pumping stage.

Let us find the inversion n
3
 by the end of the emission stage when m

3
 =

m
2
. To do this we expand nS in a Taylor series:

33
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1
aa |)|1)(2)(1(
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2
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|)|1(|)|1( ηηη −−− +−−++−++++= SSSSS ASSSASSASAn

(7.58)
Higher order terms can be neglected by virtue of the condition

1|| a <<= η
δ
ρη A

G
S ,

which is due to inequalities (7.52) and (7.54). Substituting (7.58) into (7.57)
we find, to accuracy within terms of order η3:

||1
)1(

3

2

a

2

23 A
S

+
−−−= ηηη .

The necessary condition for existence of a limit cycle 1|| 13 ≥−ηη  is given
by

1
|| a −
≥

A

A

G
A

ρ
δ

,

which fully coincides with (7.38).

7.2.3 Experiments with a CO
2
 Laser. The Rate Equation Model of a

Three-Level Laser with a Two-Level Nonlinear Filter
The most systematic experimental investigations of the influence of a satu-
rable absorber on laser dynamics were carried out with CO

2
 lasers [510-
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521]. Besides the fact of the steady-state instability, these experiments
have revealed the features of laser behavior, which do not find explanation
in terms of the simplest two-level model described above. The most sig-
nificant of these features is that two types of time-dependent processes are
observed. The first one begins to exhibit sinusoidal oscillations just above
the instability threshold. The amplitude increases and the oscillation trans-
form to a sequence of smooth single pulses as the laser is pushed inside
the unstable region (Fig. 7.11a,b). The process of other type exhibits quite
a different pulse shape where the leading intense peak is followed by a tail
of diverging oscillations and then the laser cutoff occurs. After a time of
the order of microseconds the process restart (Fig. 7.11c,d) the pause can
be shorter than the emission stage of the process.

The scenarios, by which the dynamic regimes change when the control
perimeters (the pumping level, the cavity tuning with respect to the transi-
tion frequencies in both media, and the density and relaxation rates of
saturable absorber) are varied, can also be different. The existence of cha-
otic regimes has been revealed experimentally in Refs. [519,520]. The route
to chaos may contain a cascade of period doubling. The matter is so when
smooth pulses are generated. In the second case the process of changing
the number of oscillation in the pulse tail is also takes place.

The abundance of control parameters and the diversity of experimental
investigations by different authors greatly impede a systematic descrip-
tion of the existing possibilities. We, therefore, restrict ourselves to the
experimental phase diagram in the parameter plane (cavity tuning, absorb-
ing cell pressure) taken from [519,520]. The diagram given in Fig. 7.12
clearly demonstrates the rich dynamic potential of the system.

The existence of regimes with complex form of signals is associated
with the topological situation in the phase space described by Shil’nikov
[531]. According to his theory, the representative point, having escaped
along the separatrix from the vicinity of a saddle-focus fixed point, then
returns to it moving along a spiral trajectory. Therefore, a train of damped
oscillations should follow the first intense peak. However, the inverse se-
quence takes place in CO

2
 lasers, i.e., the oscillations in the pulse tail grow

instead of being damped. Such a sequence corresponds to the fixed point
of an unstable focus – stable node type. The pause with a zero field value
between pulses means that the system spends some time near the other,
trivial fixed point.

Numerical simulation shows that solutions of the two types mentioned
above can be obtained in the laser model assuming a three-level approxi-
mation of the laser medium [532, 533]. Using the energy diagram shown
in Fig. 7.13 we write the set of equations in dimensionless form consistent
with Eqs. (7.11)
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These equations (excluding the last one) have been obtained from Eqs.
(3.113) by adiabatic elimination of the polarization 32

~
P  and time

renormalization from t32γτ =  to tww )2( 3231 +=τ . The parameters marked
by a dash on top are also normalized to 3231 2ww + . As an additional vari-

Fig. 7.11. Observed (a–d) and calculated (e–h) using Eqs. (7.59) shapes of the output
intensity of a CO

2
 laser with a saturable absorber [513]: a – CH

3
OH pressure is 325 mTorr,

discharge current 6 mA; b – CH
3
OH pressure is 325 mTorr, discharge current 8 mA; c  –

HCOOH pressure is 77 mTorr; d – SF
6
 pressure is 23 mTorr.
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Fig. 7.12. Phase diagram of a CO
2
–laser with a CH

3
I absorber in the control parameter

plane (cavity detuning, pressure in the absorption cell): P
n
 stands for the domains of

existence of regimes with n oscillations at the pulse tail, C is the region of chaotic behaviour
[519].

able with respect to (7.11) we have chosen the population of the lower
laser level n

2
 as in Section 3.5.

Examples of numerical solutions of the set of rate equations similar to
(7.59) are given in Fig. 7.11e–h. The similarity of these solutions to the
oscillograms of the real process in a CO

2
 laser is notable in almost all

details. An important role is played by the absorber saturation parameter
ρ/δ. This parameter is less than unity in the upper two Figs. (7.11e and
7.11f) and more than unity in the lower two Figs. (7.11g and 7.11h). The
pause between pulses decreases with decreasing ρ/δ and when it disap-
pears the regime of the second type is replaced by the first one.

The similarity of the numerical simulations in Fig. 7.11 and the experi-
mental oscillograms is, of course, very impressive. This alone, however,
does not allow to think that the problem of interpretation of the experi-
mental results is fully exhausted. Obviously, the resemblance between the
solutions and experimental data can also be achieved by parameter fitting
in the model of laser with a two-level active medium without adiabatic
elimination of the polarization of both (amplifying and absorbing) media
[534]. These models have been intensely investigated by many authors but
are not considered in this book.

7.3 Laser with a Nonlinear Dielectric

In the previous section we have demonstrated the connection between the
loss nonlinearity in the medium filling the cavity and the laser dynamics.
Besides the bulk losses, the laser cavity has other forms of losses, which
are sensitive to the laser field. For example, the reflectivity at the inter-

CW
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faces can be changed. In semiconductors the reflectivity depends on the
electron and hole densities in the surface layer. The carrier density in-
creases with increasing intensity of light incident onto the semiconductors
surface, thus increasing the reflectivity. Therefore, the cavity Q-factor is
an increasing function of laser power if one of the cavity mirrors is a semi-
conductor crystal. A laser with such a cavity can generate giant pulses
[535–537].

Another possibility is passive modulation of diffraction losses. This
requires the use of a medium for which the refractive index depends on the
field intensity. A layer of such a medium acts on a beam that passes through
it as a lens with an intensity-controlled focal length. Such nonlinear prop-
erties in the optical range are exhibited by many dielectrics. They are stron-
gest in organic solvents [538] and weaker in the laser crystal hosts [539,
540].

The presence of a nonlinear dielectric in the cavity leads to dynamic
deformation of the modes, which causes a dependence on the laser power
of both the diffraction losses and the effective filling factor.

7.3.1 Examples Showing the Influence of the Refractive Index
Nonlinearity on Laser Dynamics
The influence of a nonlinear dielectric on solid-state laser dynamics has
been observed experimentally. When an organic solvent is placed in a plane-
parallel laser cavity, the spikes are shortened and their amplitude and rep-
etition time increase [541]. The changes in laser behaviour are markedly
increased if one of the cavity mirrors is tilted [542–544].

There are some facts, however, which do not permit an unambiguous
interpretation, although superficially they resemble those discussed above.
In a ruby laser with a misaligned (or, more generally speaking, unstable)
cavity, intense spikes arise without adding nonlinear elements [89–91,103,
545]. Possibly we should add to this list the result of Ref. [546] concern-
ing a ruby laser with longitudinal pumping by a narrow beam of an argon

Fig. 7.13. Energy-level diagram of a three-level laser with a two-level absorber.
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ion laser. Sharp enhancement of the spike amplitudes was provided by
slight tilting of the pumping beam with respect to the cavity axis.

While for solid-state and most of other types of lasers the nonlinear
dielectric is modeled as a lens, one must consider a nonlinear dielectric act
as a waveguide when dealing with semiconductor devices [547], since the
active region has the form of a layer only of few microns thick. The local-
ization of the field in the active layer is due to the dielectric constant gra-
dient associated with the p–n junction (injection laser) or the increased
electron density (semiconductor laser excited by an electron beam). Ow-
ing to the strong absorption of the wave outside the active layer, the laser
is very sensitive to the degree of field localization. The nonlineariry of the
refractive index of the active layer has greater influence on laser dynamics
when the waveguide properties are weaker. This assumption has been sub-
stantiated experimentally: doping of the surface layer of a GaAs crystal
with Zn to produce a dielectric waveguide weakens the pulsations in an
electronically pumped laser [548].

7.3.2 Passive Modulation of Diffraction Losses by a Dielectric with
Cubic Nonlinearity (Kerr Medium Inside a Cavity with Aperture)
It is the goal of this section to demonstrate that the steady state can, in
principle, become unstable owing to the nonlinear refractive index of the
medium inside the laser cavity. Consider a laser operated on the funda-
mental Gaussian mode [549]. For a rigorous analysis one should use a
spatial-extended model, since the effects in question are due to the dy-
namical deformation of the field profile. The situation can be simplified
by disregarding the influence of the transverse dynamics effects in the
laser medium and pay attention only to the dependence of diffraction losses
on the laser intensity on the beam axis.

In order to estimate the diffraction losses we assume that the energy of
that part of light beam, which is outside an aperture, is lost in each trip
round the cavity. The influence of the finite sizes of the mirrors on the
transverse field structure is assumed to be insignificant. Such an approxi-
mation is appropriate for a laser with a stable cavity, which is taken to be
far from concentric so that we may ignore the dependence of the beam
cross-section on the longitudinal coordinate. We, therefore, have the fol-
lowing definition of the diffraction loss coefficient:

∫
∫

−=Π
V

V
V

d

d
1

2

2

diffr
c

ψ

ψ
.

The integral in the denominator is taken over the entire space, whereas the
cavity aperture over the volume limits the integral in the numerator. By
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the normalization condition the second is LbV 2
c π= , where b is the radius

of the mirror while the first should be calculated assuming the Gaussian
function of the transverse intensity distribution )/exp( 22 ar−=ψ , where a
is the effective radius of the light beam. It is easy to see that
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
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. (7.60)

The damping rate of the ‘empty’ cavity and the loss coefficient are related
by

   )(
2 diffrloss Π+Π=

L

cκ , (7.61)

where lossdiffr Π<<Π .

In the aberrationless approximation for the light beam of finite size, a
layer of dielectric with a nonlinear refractive index acts as a lens with
variable focal length F

nl
. Bearing in mind that the laser rod also has lens

properties because of nonuniform heating, the equivalent lens inside the
cavity is described by

         
nl0
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FFF

+= . (7.62)

a plane-parallel cavity with the lens at its centre is equivalent, provided F >> L,
to a spherical cavity of the same length with focal F of its mirrors [550]. In this
case
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Suppose that the refractive index depends on the photon density
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The nonlinear part of susceptibility is proportional to the square of the
field intensity and the polarization is proportional to the cube of the field
intensity, owing to which this nonlinearity is called cubic. A Gaussian
beam with a plane phase front
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after passing through a dielectric layer, transforms to
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where
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2nl4
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L
nl 

denotes the thickness of the layer of nonlinear medium and M the total
number of photons inside the cavity.

In the aberrationless approximation we replace Eq. (7.66) by
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In doing so, we expand Eq. (7.66) in Hermitian functions, the first of which
is Eq. (7.67). The quantity Ψ~  is chosen such that the coefficient of the
first term of the expansion, i.e.,

∫ ∗ SEE d
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outout ,

is as close to

∫ SE d|| 2
out

as possible. Under this condition, neglect of the higher order terms is the
most correct. Correspondingly, 4/

~ Ψ−=Ψ  and the focal length of the
aberrationless lens is given by
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Using Eqs. ((7.62), (7.63) and (7.68) we find the radius of the Gaussian
beam. For F
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>>F
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and, according to (7.60),
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Inserting Eq. (7.70) into Eq. (7.61) we arrive at

         )1(0 gM−=κκ , (7.71)
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The dynamical change of the beam radius influences both the diffraction

losses and the gain ∫ VN d2ψ . The role of the latter effect is enhanced if

the radius of the light beam exceeds the radius of the active medium. This
version of the problem will be considered later. So far we shall focus here
on the opposite case, disregarding the gain modulation. This makes it pos-
sible to assume that the laser medium is not space-extendent and, hence,
use the conclusion drawn in Section 7.1. The derivative β′  in Eq. 7.8 is
related to coefficient g defined in Eq. (7.72) by
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Substituting Eq. (7.73), as well as 1−= Am  into Eq. (7.8) we find the
instability condition for a laser with a Kerr medium:
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The quantities in the left-hand side of the inequality (7.74) are collected
into two factors. It is convenient to compare Eq. (7.74) with the instability
condition for a laser with saturable absorber (7.38), which can be rewrit-
ten in similar form
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The second brackets of both inequalities are completely coincident. Al-
though the first brackets are different, their physical meaning is similar.
Each of them characterizes the efficiency of the respective nonlinear me-
dium as a passive loss modulator. It is possible to combine both inequali-
ties, (7.74) and (7.75),
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using the generalized coefficient
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In order to estimate whether the instability threshold can be reached using
a spherical cavity we transform inequality (7.74) with the help of Eq. (7.72)
to
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Estimating the argument of the logarithmic function to unity we find the
minimum value 2nlηL , for which instability might occur in principle
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Assuming σ
tr
 = 10–20 cm2, k = 9·104 cm–1, L = 102 cm, b = 0.5 cm, A >>1,

we obtain 426
min2nl cm10.4)( −=ηL . Introducing a nonlinear medium equiva-

lent to a centimetre length carbon bisulfate layer ( 323
2 cm102 −⋅=η  [551])

into a ruby laser cavity destabilizes the lasing for cm105
0 >F . Using the

nonlineariry of the ruby crystal host, which, according to [552], is charac-
terized by 325

2 cm108.3 −⋅=η , we find that the instability criterion (7.75)
can also be satisfied, since 

min2nl
424

2nl )(cm104 ηη LL >⋅≈ −  for a rod length
cm10nla == LL .

Our treatment above refers rigorously to a parallel arrangement of the
cavity mirrors. However, even a small angle between them, comparable to
the available accuracy of alignment, can markedly change the result. Mir-
ror tilt to an angle ϑ  causes the beam to shift toward the mirror side by

ϑFx =∆  on single pass. Misalignment plays a determining role when the
beam shift x∆  is comparable to the mirror radius (cavity aperture). Using
this simple consideration we can reliable estimate the critical value of the
focal length in the misalignment:

ϑ/cr
0 bF ≈ .

Assuming ϑ  = 10′′  and b = 0.5 cm we obtain cm104cr
0 ≈F .

Experimental observation of the influence of nonlinear dielectrics on
laser dynamics is impeded by optical inhomogeneities of the laser rods.
Owing to nonuniform heating the dielectric behaves as an excessively strong
(according to the estimates proposed) positive lens with F

0
 < 103 cm. Ap-

proaching the instability threshold requires cavity misalignment or posi-
tive lens compensation, which was observed in the Refs. [541–545].
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7.3.3 Passive Modulation of the Mode Filling factor (Kerr Medium
Inside a Cavity Without Aperture)
The uniform distribution of inversion across the cavity cross-section is
never achieved. Hence, the dynamic deformation of the beam profile should
be accompanied with the cavity filling factor modulation or, in other words,
passive gain modulation. In studying this effect it is impossible to neglect
the dependence of N on the transverse coordinate. However, the depen-
dence of N on the longitudinal coordinate may be considered as previ-
ously, to be in an inconsequential range. Thus, by adiabatic elimination of
the polarization (the off-diagonal elements of the density matrix) we trans-
form Eqs. (2.76) to
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A nontrivial question arises: What the cavity volume should mean cV ?
Since the field profile is given by eigenfunction )2/exp( 22 ar−=ψ , the
cavity volume is calculated as

∫ == LaVV 22
c d πψ .

The dependence on laser power is also contained in this factor owing a2.
Introducing the dimensionless notation
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impossible to neglect the dependence of N on the transverse coordinate.
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However, the dependence of  on the longitudinal coordinate may be con-
sidered as previously, to be in an inconsequential range. Thus, by adia-
batic elimination of the polarization (the off-diagonal elements of the den-
sity matrix) we transform Eqs. (2.76) to
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By ρ
a
 we mean the radius of the laser rod while the beam radius is defined

by Eq. (7.69). The quantity α  differs little from unity in the whole range
of m, thus making it possible to put 1=α . Linearizing Eqs. (7.82) and
assuming solutions in the form λτexp , we find, in a standard manner of
the linear stability analysis, the approximate damping rate of small oscil-
lations:
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The oscillation frequency is given by
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The steady state becomes unstable ( 00 >θ ) if two conditions,
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are satisfied.
The factor 1–ρ2 indicates two opposite tendencies. A decrease in the

mode radius improves the lasing conditions in a laser medium of finite
size. On the one hand, this leads to the development of instability because
of the increase of the mode-filling factor. On the other hand, these are a
tendency towards stability via the increase in the pumping excess over the
laser threshold.

The last inequalities are greatly simplified if the dependence of n on ρ
within the active region can be neglected. The approximation is justified
either when the active zone radius is small or the laser threshold is slightly
exceeded. This is easily seen from

)exp(1 2ρ−+
=

m

A
n .

Assuming const=n  we transform (7.84) to

       0)exp( 2
a

2
a >−ρρn (7.86)

and see that this inequality is satisfied within the framework of the ap-
proximations we have adopted.

The steady-state solution of Eqs. (7.82) is given by

1,/1 2
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2
a −≈≈ ρρ Amn . (7.87)

Integrating Eq. (7.85) and using Eqs. (7.81), (7.83) and (7.87), we arrive
at
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which is the steady state instability condition for a laser with Kerr medium
in a cavity without aperture. The inequality (7.88) is similar to (7.74).
Only in place of the aperture parameter loss

)0(
diffr

2 / ΠΠb  we have the beam
parameter 2

0a . Thus we come to instability criteria like Eq. (7.76), but it
should borne in mind that

     
0

2nl
2

2
0nl η

ηπ
cL

Lk
aK = . (7.89)

If the laser rod host acts as a nonlinear dielectric, then the greatest in-
fluence of self-focusing on laser dynamics is achieved in a cavity with the
mirrors at the rod ends ( LL =nl ). From Eq. (7.88) it follows that instabil-
ity threshold is independent of the cavity length in this case. Using typical
parameter values for a ruby laser ( 5.1,cm10,cm10 0

-15220
tr === − ησ k ,

-18 s10=κ ) for cm05.0,1 0a =>> aAρ  leads to the necessary condition for
instability 325

2 cm105.0 −⋅>η . For ruby 325
2 cm108.3 −⋅=η , and this esti-

mate indicates that such instability is quite real.
The instability of this type should be most readily exhibited in a laser

with a very thin active element immersed in an index-matched medium.
This might occur, for example, if a sapphire shell surrounds a ruby rod.
Index-matching is needed to avoid reflections at the sides of the active
medium, which can localize the light field inside. For a four-level laser
medium, then the same result is obtained by pumping with a narrow beam
propagated along the cavity axis. However, in a three-level medium with a
narrow pumping beam, outside the inversion region the absorption is strong
and the situation nearer to that of passive loss modulation.

In essence, we have considered two special cases in this section. We
have demonstrated that an instability can arise from self-focusing in a non-
linear medium placed inside the cavity of a class B laser. This is a key to
understanding the experimental results described in Section 7.3.1 and ear-
lier in Section 1.2.3. However, this should not be treated as a quantitative
theory suitable for detailed comparison with the experiment.

7.4 Passive Mode Locking in Lasers

Various aspects of multimode operation were discussed in the previous
chapters. We considered relatively slow processes, with the time scales
much larger that the cavity round trip time T

0
. In these cases the presence

of many modes and their interaction exert noticeable influence. However,
the most obvious consequence of multimode lasing is the presence of fast
oscillations of the laser intensity due to temporal mode interference. These
fast oscillations may vary, depending on the amplitudes, frequencies and
phases of the laser modes. Of all these quantities, the most important role
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is played by the mode frequencies. If they form a spectrum with equal
spacing, then the output intensity is periodically modulated. Otherwise
the output has the form of irregular oscillations.

Equality of the spacing in the mode spectrum is a necessary condition
for mode locking, which is very important for practical purposes. In the
broad meaning of mode locking, equidistancy of the spectrum is a suffi-
cient condition. In quantum electronics, however, the term ‘mode locking’
usually has a narrower meaning, i.e., this should not be  simply periodic,
and the pulse duration should be minimum possible for a given spectral
width. The last requirement imposes limits on the form of the spectral
envelope, which, roughly speaking, should be smooth, and on the mode
phases, the frequency dependence of which should be linear. Generally,
the regime that satisfies all these requirements is referred to as ‘phased
mode locking’.

Nonlinear mode-mode coupling in the media inside the laser cavity is a
key factor in mode locking. Indeed, nonlinear mode-mode coupling in ab-
sorbing media is used to achieve passive mode locking [553–568]. Mode-
mode coupling in a laser medium can force equidistancy in the spectrum
[559–563] as mentioned in Section 4.5.1, and it can determine some phase
relations between the modes. Similarly, phase relations among the modes
are the reference point in the theory of passive mode locking.

7.4.1 Role of the Laser Medium Nonlinearity in Mode Locking
It is a priori clear that owing to its nonlinear properties, the active medium
should influence the mode locking process in lasers. The first study of the
nature of this influence was made in Refs. [559–563]. Postulating a ‘maxi-
mum emission principle’ the authors infer that the combination tone mode-
mode coupling in a laser medium can lead to phase locking of the modes.
It appeared, however, that the ‘maximum emission principle’ contradicted
the conclusion that follows directly from the laser equations and that the
phase relations between modes found in such manner are erroneous [564].

In order to study the problem of phase relations controlled by the com-
bination tone mode-mode coupling we consider Eqs. (4.79). Assuming the
inequality (4.85) is satisfied we suppose that the mode frequencies are
equally spaced and neglect the influence of dispersion on the mode fre-
quencies. Thus, the steady-state phases can be defined by a set of equa-
tions

0)
~~~~

Re( comb =+−− ++ µGGGG q�kqk , (7.90)

in which, according to Eq. (4.77),
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Assuming that the medium is sufficiently slow in its relaxation
( 1/~/ || >>∆=∆ γωγ ) and passing over to the real amplitudes and phases
( kkk iFf ϕexp= ) we write instead of Eq. (7.91)
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where

         µµµ ϕϕϕϕ +−−=Φ ++ qkqkkq . (7.93)

Based on the assumption that phased mode locking occurs, i.e., 0=Φ µkq ,
the laser spectrum has a rectangular form, FFk ≡ , and, in addition,

nnkq ≡µ , we have
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The enumeration of the modes is such that the spectrum boundaries corre-
spond to the indices 2/)1( −±= Nk . The function )/( NkF  in the brackets
is different from a linear one and, therefore, the expression (7.94) does not
satisfy the phase equations (7.90). Thus, we infer that mode locking due to
the combination tone interaction in a slowly relaxing laser medium is not
possible.

The assumption that all the quantities n
kq µ

 are equal is reasonable only
in the case of uniform saturation of the laser medium. Undoubtedly, such
an assumption is valid for an unidirectional ring laser. In a Fabry–Perot
cavity, a situation similar to that occurs when many modes are excited or
when the laser threshold is only slightly exceeded. Moreover, the laser
medium should uniformly fill the cavity or be concentrated in a relatively
thin layer near the mirror. Any other arrangement of the laser rod changes
the situation with n

µ
, but this fact is not essential to the conclusion that the

phase self-mode-locking is not possible.
In steady state the form of the spectrum is typically parabolic rather

than rectangular. However, this is not very important in this context. Only
the finite width of the spectrum matters. If the laser frequency band is
infinite, then the condition 0=Φ µkq  leads to 0

~
Re comb ≡kG  making the self-

mode-locking (spontaneous formation of δ-pulses) feasible.
Assuming that the laser medium is fast, i.e., 1~/ <<∆ γ  Eq. (7.91) transform

to
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Disregarding the nonequidistancy of the cavity eigenfrequences Eqs. (4.78)
are written as
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These equations are satisfied by the steady states 0=Φ µkq , which corre-
spond to phased mode locking, and the problem is reduced to studying the
stability of such a solution.

Complete analysis of the laser stability of the mode-locked state is rather
time consuming. However, it is relatively easy to investigate the laser sta-
bility with respect to a particular form of perturbation involving only the
mode phases. Assume that the phase deviation of the −k th mode,

kkk ϕϕδϕ −= , is small, and linearize Eqs. (7.96) near 0=Φ µkq . The lin-
earized equations written as
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have a positive right-hand side. This is an indication that the steady-state
solution is unstable.

This result means that combination tone mode-mode coupling in an
inertialess laser medium does not lead to phase locking either. Meanwhile,
it is seen from Eq. (7.97) that a sign reversal of the population difference
changes the situation. Thus, we have arrived at the idea of passive mode
locking in a laser with a saturable absorber.

7.4.2 Threshold Conditions of Passive Mode Locking
In the presence of a saturable absorber the phase equations (4.78) trans-
form to
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Consider the most important practical case where the transition frequen-
cies and the active and the absorption media coincide ( a0 ωω = ) and the
absorber is fast ( 1/ a|| <<∆ γω ). If the lasing modes occupy the frequency
band ( a||γω <<∆N ), then for the saturable absorber the expression
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is valid, which is similar to Eq. (7.92). As before, ρ is the ratio of the
cross-sections of the transitions in absorbing and amplifying media and

||a|| /γγδ = .
Complete phased mode locking corresponds to 0

~
Re comb

a =kG . As shown
above, the condition 0sin =Φ µkq  does not satisfy the equations of laser
without a nonlinear filter even if all the frequencies in the laser spectrum
are equally spaced. However, the use of a saturable absorber makes it pos-
sible to come close to this condition. The requirement is that the nonlinear
parameter of the absorber an)/( δρ , be larger than that of the laser me-
dium, n)/( || ωγ ∆ . For 1/ <<δρ  Eqs. (7.37) are valid and yield

aaa ,1 AnAn ≈+≈
and make it possible to write this criterion in the form
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We therefore get the necessary condition

 1
a||

>∆
γ

ωρ
. (7.101)

Substituting into (7.100) typical values -194 s10,10 =∆= ωρ  and
-111

a|| s10=γ , which certainly satisfy the inequality (7.101), yields
2lock

a 10−=A . Hence, in a steady state mode locking is achieved if the unsat-
urated losses in the nonlinear filter exceed 1% of the total cavity losses.

With the chosen parameters of the nonlinear filter, the inequality (7.101)
can be treated as an upper limit on cavity length

a||γ
ρπc

L < . (7.102)

This conclusion has been confirmed experimentally. In Ref. [565] it is
found that in a neodymium glass laser passive mode locking is achieved
only for L < 60 µm. This fact is in quantitative agreement with Eq. (7.102)
provided -111

a|| s102 ⋅=γ .
The threshold condition of passive mode locking is weaker than the

low-frequency instability criterion of a class B laser if

)1( −>∆ AA κω ,

i.e., if the resonance curves of the cavity modes do not overlap. This shows
the feasibility of passive mode locking of a solid-state laser without spikes.

The threshold condition that coincides with Eq. (7.100) can be obtained
by both taking the modal approach discussed above and the spatio-tempo-
ral approach used in [566]. A common feature is the necessity of taking
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into account the population difference oscillations in the laser medium.
This validates the assumption of mode decoupling by the nonlinearity of
the active medium.

In the previous section we mentioned that there is close analogy be-
tween the influences of absorptive and refractive (Kerr-like) nonlinearities
on the laser stability. The steady state instability criteria have been written
in a generalized form introducing the parameter K

nl
, which was defined by

Eq. (7.77). This analogy is useful in an analysis of passive mode locking
conditions as well.

Let us write the inequality (7.100) in the same generalized form:

1
tr
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Correspondingly, for a laser with the Kerr medium we have
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which is the criterion for passive mode locking via self-focusing in a cav-
ity with aperture.

For a ruby laser (L
nl
= 15 cm, L = 100 cm, b = 0.5 cm, η

0
 = 1.76,  η

2
 =

3.6·10–25 cm3,  220
tr cm10−=σ ) mode locking is possible for

3
lossdiffr 10/ −>ΠΠ . The requirements slightly more stringent in the case of

Nd:YAG laser ( 219
tr

325
20 cm105.4,cm107,82.1 −− ⋅=⋅== σηη ). These es-

timates provide sufficient ground for attributing the early experimental
results on self-mode-locking in ruby [567] and Nd:YAG [568] lasers to
self-focusing in the laser crystal host. There have recently been a great
number of experimental publications devoted to self-mode-locking in la-
sers using Ti:sapphire and other crystals with a broad gain line as laser
media. Generation of femtosecond pulses is achieved both in diaphragmed
laser cavities [569–571] and under the condition when the aperture effects
cannot play an essential role [572]. In the latter case it is reasonable to
assume the action of the mode-locked mechanism through passive modu-
lation of the filling factor. The threshold condition

                                          1
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can be obtained by substituting the “diffraction” factor loss
)0(

diffr
2 / ΠΠb  in

Eq. (7.103) for beam parameter 2
0a  by analogy with Eqs. (7.77) and (7.89).
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7.5 Processes in a Traveling Wave Laser with Saturable
Absorber

The occurrence of mode locking (ultrashort pulse generation) depends on
two conditions. First, simultaneous excitation of a large number of modes
is required. Second, definite phase and frequency relations between these
modes should be provided. These two conditions have a threshold nature
and can relate to each other in different ways, thus leading to a variety of
physical situations. When the multifrequency threshold is above the mode-
locking threshold, bistability and hysteresis occur, and the mode-locking
regime can be achieved through hard excitation.

In order to investigate the situation arising here one should consider
the problem of the multimode laser threshold, i.e., stability of single mode
oscillation in the presence of a saturable absorber. If the cavity modes are
standing waves and the length of laser medium is comparable to the cavity
length, the multimode regime will be established for a small excess of the
pumping above the lasing threshold, owing to the weak spatial mode com-
petition (see Section 4.1.2).

The problem of stability of single-frequency operation of a travelling
wave laser was discussed in Section 4.6. Coherent interaction of laser ra-
diation with the active medium may destabilize a single-frequency regime,
but considerable excess pumping above the laser threshold is required.
This requirement is not so rigorous if the laser cavity contains a saturable
absorber. Of course, one is tempted to simplify the problem by making use
of the rate equation approach. It should be borne in mind, however, that
adiabatic elimination of the laser medium polarization greatly changes the
dispersive properties of the model, influencing the result inevitably. There
has recently been an increase of interest to this fact in connection with the
spatio-temporal structures in the laser radiation field [573]. Much earlier
this problem was considered by Gurevich [574], and we use his method in
what follows.

7.5.1 Rate Equation Model of a Traveling Wave Laser Without Bulk
Losses
Unlike the problem formulation in Section 4.6, we now assume that the
linear losses are attributed to the cavity mirrors and that the laser medium
occupies part of the cavity perimeter (Fig. 7.14). Wave propagation in the
laser medium is described by the equations

       BMN
z

M

t

M =
∂

∂+
∂

∂
, (7.105a)
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BMNNN
t

N −=−+
∂
∂

)( )0(
||γ , (7.105b)

that represents an apparent generalization of Eqs. (3.5) to the case of a
travelling wave without losses. These equations are used to define the re-
lationship between the input and output wave intensities. For this, one
must turn briefly to the moving frame of reference, zzczt =−= ,/ϑ , by
transforming Eqs. (7.105) to

          BMN
z

M
c =

∂
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, (7.106a)
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)( )0(
||γ

ϑ . (7.106b)

The variable N, expressed through M by means of Eq. (7.106a), is substi-
tuted into (7.106b), and the resulting equation is integrated with respect to
z. This transformation is admissible if 0≠M . In a fixed frame of refer-
ence the resulting equality looks like
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The arbitrary function )/( cztf −  can be excluded from our consider-
ation by writing Eq. (7.107) for the initial cross-section z = L

1
 and time t,

as well as for the input cross-section z = 0 and the advanced time t – L
1
/c.

Deducing one equation from the other we obtain
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where ),()(),,()( 000111 LtMtMLtMtM == .

For passing through the empty cavity section the wave requires time
cLL /)( 1− . The power transfer coefficient for this section is R and, there-

fore,
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Two equations, (7.108) and (7.109), can be combined into one equation.
Using the dimensionless variables

cLRcLBNAMBmt /),ln/(,, ||0
1

1
)0(1

|||| γζγγτ ==== −− , (7.110)

we write this equation as
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The nonlinear differential-difference Eq. (7.111) has the unique steady-
state solution

       )1(
1

ln 1

−
−

=
−

A
R

R
m . (7.112)

If the losses are small, such that 11 <<− R , then Eq. (7.112) is slightly
simplified:

1−= Am .
Note that Eq. (7.111) does not have a trivial solution, since it was assumed
that 0≠M  when this equation was derived.

In the vicinity of the steady state Eq. (7.111) can be linearized with
respect to the variable mmm −=δ . The solutions of the linearized equa-
tion have the form )exp(0 λτδm , where l is the root of the characteristic
equation

  )exp(
1

1
0λζ

λ
λ =

++
++

m

mR
. (7.113)

First we will find the roots, which satisfy the inequality 1||0 <<λζ  and
admit an expansion λζλζ 00 1)exp( += . Eq. (7.113) transforms to

       0)1()1( 1
0

2 =−+++ − mRm ζλλ . (7.114)

Note that

         GR
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cR =≈−=−
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2
)1(

1

γ
κ

γζ (7.115)

and, therefore, for 1 – R<<1 Eq. (7.114) coincides with Eq. (3.19).

Fig. 7.14.  Scheme of a ring laser with
nonlinear absorbing cell and a selective
element which represents the dispersive
properties of the laser medium: 1 – output
mirror, 2,3 – total reflecting mirrors, 4 – laser
rod, 5 – nonlinear cell, 6 – linear bandpass
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We now consider the roots of Eq. (7.113), which satisfy the condition
1|| >>λ . When one of these roots is substituted into Eq. (7.113), the left-

hand side of the equality is close to unity. This means that

θζπθλ +∆+=+Ω= − ~
2 1

0 iiqi ,

where 1
0|

~
| −<<+∆ ζθi . Multiplying Eq. (7.113) by the complex conjugate

equation we find:
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,

hence

        220 )1(

)]1(2)[1(
2

Ω++
−+−≈

m

RmRmθζ . (7.116)

For ,...2,1=q the first term in the denominator can be neglected so that
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θ , (7.117)

and in the case R ≈ 1, we find, in view of (7.115)

     )1(2 −Ω−= − AAGθ . (7.118)

This equation yields a monotonic decrease of the perturbation damping
rate as the perturbation frequency grows. This result is true as long as the
rate equation approach, which ignores the laser medium dispersion, is valid.
Taking the dispersion into account is critical exactly in the domain of high-
frequency perturbation. To see this we assume, following [574], that the
laser cavity contains, besides the nondispersive laser medium, a hypothetical
frequency filter with the passband ⊥γ  to transform the laser intensity by
the law
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Using this equation instead of Eq. (7.109) we obtain the set of equations
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instead of (7.111). Here, )( 0|| LLii −= γζ  is the dimensionless coordinate
of each cross-section shown in Fig. 7.14 and im  is the field intensity in



295

Lasers with Nonlinear Parameters

the corresponding cross-section. Linearization of Eqs. (7.120) yields a
characteristic equation

        )exp(
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. (7.121)

Multiplying (7.121) by the complex-conjugate equation and neglecting the
small terms we find the perturbation decay rate as a function of the pertur-
bation frequency:
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This dependence has an extremum for the frequency
4/1

0101
2/1

max ))(2[(
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mmmm −++Ω=Ω − . (7.123)

In a wide range of frequencies, including maxΩ=Ω , Eq. (7.122) is approxi-
mated by an expression
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The parameter 02/~ ζγ  is nearly the same for different types of lasers. We
assume for estimates that -112 s10=⊥γ  and L = 1.5 m, which corresponds to

4
0 102/~ −=ζγ .

The diagram of function (7.124) is given in Fig. 7.15. The frequency of
the perturbation assumes the discrete set of values

0/2 ζπqq =Ω  ( ...,3,2,1=q ). (7.125)

The frequency minΩ  corresponding to the minimum damping of the per-
turbation enters this set if min1 Ω<Ω , which is equivalent to

    4/12/1
||min )]1)(1(2[)(2 −−

⊥ −−≈> RAAcLL γγπ .           (7.126)

Using numerical values 9.0,2,s10,s105 -112-13
|| ===⋅= ⊥ RAγγ  yields

m301 ≈L .
For solid-state lasers with cavity length of order 1 m each perturbation

frequency is larger than minΩ . Thus, for these parameter values and L =
1.5 m we have 20~

1
2/1 ≈Ωγ  and 65.0~

min
2/1 ≈Ωγ . For a dye laser with

-18
|| s102 ⋅=γ , from Eq. (7.126) we have: L

m
 =1 7 cm, and from Eq. (7.125)

it follows 1.0~
1

2/1 ≈Ωγ .
In Fig. 7.15 the dashed line shows the function )(Ωθ  in the ordinary

rate-equation approximation, which ignores the gain dispersion. It is clearly
seen that this approximation is of course inapplicable for study of the pro-
cesses with frequencies min1 Ω≥Ω . Therefore, it is complete inapplicable
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Fig. 7.15. Decay rate of the disturbance as a
function of its frequency. The left vertical line
indicates the low-frequency limit of the
disturbance spectrum which corresponds to the
minimum intermode spacing for a dye laser. The
right vertical line has the same sense but for a
solid-state laser. This diagram corresponds to
the following values of parameters:

9,0;10~/2;2 4
0 === RA γζ .

in a solid-state laser, since its whole spectrum of admissible perturbation
frequencies is larger than minΩ . However, this approximation is quite ac-
ceptable for a dye laser, and it is not surprising that a rate equation ap-
proach [575] yields about the same results as the analysis based on a more
general semiclassical model [576].

7.5.2 Instability Threshold of Single-Frequency Operation of a
Traveling-Wave Laser with Nonlinear Filter
Let us return to the laser scheme shown in Fig. 7.14. The change of the
intensity of the light wave as it passes through the laser medium is de-
scribed by Eq. (7.108). This equation is also useful for describing interac-
tion with a nonlinear absorber. Adding Eq. (7.119), which adequately takes
into account the dispersion of the laser system we arrive at the desired
laser model:

R
Amm

m

m 1
ln)()(

)(

)(
ln1 011

0

11 =−+++







∂
∂+ τζτ

τ
ζτ

τ ,    (7.127a)

           R
Amm

m

m 1
ln)]()([

)(

)(
ln

1
1 a1133

11

33 −=+−++
+
+








∂
∂+ ζτζτ

δ
ρ

ζτ
ζτ

τδ ,   (7.127b)

                               )()(1 3300 ζτζτ
τ

+=+






∂
∂+ Rmm . (7.127c)

All these symbols take on the meanings that have been used previously in
this chapter.

Equations (7.127) satisfy the following relations between the station-
ary laser intensities in specified cross-sections over the cavity perimeter:
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The values im  are obtained in explicit form only in the case 11 <<− R  and
1a <<A  where taking into account the first two terms of the expansion of

)/ln( 01 mm  in a Taylor series leads to the expression for 0m  coincident
with Eq. (7.14). Assuming below 1/ <<δρ  and using Eq. (7.37),
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a
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which is valid in this limit, we find from Eqs. (7.128)
1
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Linearization of Eq. (7.127) in the vicinity of the steady state (7.128)
leads to a characteristic equation
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which transforms under the condition Ω<<||θ  to
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We have used the notations

33111100 ,,1,1 mDmDmCmC ρδρδ +=+=+=+= .

The instability condition of the single-frequency regime of a travelling
wave laser can be written in the form of an inequality
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which follows directly from (7.131). In all real situations 2
1

2
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2 , CC>>Ω , which
makes it possible to slightly simplify Eq. (7.132):
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For fast-relaxing nonlinear filters Ω>> ,ρδ , and the instability condition
is further simplified reducing to
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Let us consider several important cases.
1. min1 Ω>>Ω . This relation is characteristic of a solid-state laser with

minLL << . This means that the first term on the right-hand side of Eq.
(7.134) dominates. Inserting the steady-state value (7.129) into (7.134) we
find the threshold condition of instability
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Example 7.1
Nd:YAG laser with a fast nonlinear filter
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2. min1 Ω<<Ω . This condition is characteristic of all lasers with minLL >>
including dye lasers. The inequality (7.134) transforms to
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Further simplification is possible provided 1cr
a <<A  and Eqs. (7.129) are

valid. Using these equations in Eq. (7.136) we find the instability condi-
tion

2
cr
aa Ω

=>
ρ
δA

AA . (7.137)

Example 7.2
Dye laser with a fast nonlinear filter

4.0

2,A10,cm,100

,100,s102

,5,s102
cr
a

1-10
a||

-18
||

=
==Ω=

=⋅=
=⋅=

A

L

δγ
ργ

.

This example shows that in ring dye lasers the destabilization of the single-
frequency travelling wave regime occurs only when an optically dense
nonlinear filter is put into the cavity and if the initial transmission of such
a filter is comparable to the mirror reflectivity. Therefore, Eq. (7.137) can
be treated as very approximate. One should also remember the role played
by the combination tone mode-mode coupling in dye lasers, which was
discussed in Chapter 4 but which was not taken into account in this model.
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For completeness, we consider another case that corresponds to a solid-
state laser with a superlong cavity.

3. min1 ΩΩ ≈ . The term in the right-hand side of Eq. (7.134) is of the
same order, so that the instability criterion can be written approximately
as

ρ
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Example 7.3
Nd:YAG laser with a fast nonlinear filter
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The smallness of cr
aA  is worth noting. Nonlinear losses such as these may

come from impurities uncontrollably entering the laser medium as it is
prepared or due to contaminants in the atmospheric air. Meanwhile, the
time of onset of the multifrequency regime in the presence of such a weak
nonlinear filter is a few seconds. Hence, such an effect can be seen only in
a CW laser.

7.5.3 Soft and Hard Regimes of Ultrashort Pulse Formation in
Lasers with Nonlinear Filters
Two important facts have been established in the previous sections of this
chapter: (a) the conditions of multimode laser action and of passive mode
locking are both of threshold nature; (b) threshold values of the control
parameters such as the nonlinear filter optical density for these two effects
are different in general. Things are simple when the multimode laser thresh-
old is below the mode-locking threshold. Soft mode locking is sufficient
in this case. Otherwise, when the phased locking threshold is exceeded but
the threshold of a multimode laser with a smooth spectrum containing all
modes is not yet achieved, hard mode locking is possible. The effect is
that two stable regimes occur simultaneously: CW and generation of a
periodic train of pulses. Either regime can be achieved depending on the
initial conditions. Stable generation of a train of pulses occurs, for ex-
ample, when an initiating pulse is injected into the laser cavity but it may
not occur spontaneously when the laser is switched on.

Let us illustrate what has been said using a solid-state laser as an ex-
ample. In such a laser, the phased mode locking condition is expressed by
inequality (7.100) and multimode unidirectional laser operation condition
is described by Eq. (7.135). Bistability and, therefore, hard mode locking,
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occur in the range of values cr
aa

lock
a AAA << . Assuming ||γωρ >>∆  we sim-

plify inequality (7.116) and reduce the necessary hard mode locking con-
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For a Nd:YAG laser ( 9.0,2,105~,s105 9-13
|| ==⋅=⋅= − RAγγ ) the estimate

using Eqs. (7.139) yields cm150<L . Consequently, a solid-state ring-cav-
ity laser of ordinary size admits hard mode locking.

Things are somewhat different in a dye laser. Here, unlike the solid-
state laser, the damping rate of the perturbation decreases with an increase
in frequency (Fig. 7.15). This means that for 0)( 1 <Ωθ  we may have

0)( >Ωqθ  for 1>q , and the bifurcation will lead to an excitation of longi-
tudinal modes some distance from the central mode rather than the neigh-
boring ones. The process will proceed like this provided an inequality
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the opposite of Eq. (7.136), is satisfied. The left-hand side of Eq. (7.140)
is less than unity whereas 22 10 >++ mm . Therefore, the inequality
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of course guarantees that inequality (7.140) is met. In the limiting case
1a <<A  and 11 <<− R one may use the steady-state relations (7.129) and

obtain a more exact inequality
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In combination with the passive mode locking condition (7.100), inequal-
ity (7.141) or (7.142) make up the necessary condition for hard mode lock-
ing in a dye laser.

Example 7.4
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Of course, this analysis is not exhaustive, since the rate-equation model
has been used, whereas it was shown in Chapter 4 that the combination
tone mode-mode coupling considerable changes the multimode laser dy-
namics. Therefore, the model of a travelling wave laser with a saturable
absorber was numerically investigated without adiabatic elimination of
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the polarization of both media [577]. Laser parameters were assigned in
accordance with recommendations given in Ref. [578] to provide a stable
oscillation regime with one pulse in the cavity. If the population relaxation
time of a saturable absorber was taken large enough (δ <

 
δ

cr
), then the

process with one pulse, corresponding to soft mode locking, was estab-
lished under any arbitrary initial conditions.
    A decrease of the relaxation time down to values corresponding to
δ >

 
δ

c 
leads to crucial changes in laser behaviour. Thus, for δ/

 
δ

cr
 = 2.5 the

initial uniform field first evolves to the field profile with four or five maxima
per period with shallow modulation. At this rather long stage of the tran-
sient process the absorber saturation is weak. The next step of the tran-
sient process has a shorter duration. Owing to the diminishing of the field
profile minima the modulation depth starts to increase and only one pulse
will survive among the competing ones.

It should be noted that a tendency towards a longer transient process
and its variation with decreasing relaxation time of the absorber was also
mentioned in [579]. As the inequality δ >

 
δ

cr
 increases, the stage of laser

action with shallow random-form modulation becomes longer. At δ =
 
20δ

cr

this stage was still in progress when the extensive computation was over.
Meanwhile, the process is quite different after a solitary pulse is in-

jected into the laser. The transient process excited this way ends very soon
if the pulse is injected during the initial stage and if the initiating pulse far
exceed the noise level.

Numerical simulations of the dynamical processes in a dye ring laser
with saturable absorber have confirmed the conclusions that follow from
these analytical considerations. Passive mode locking was difficult when
an absorber with a very short population relaxation time was used. Such a
regime can be achieved in a pulsed laser only with hard pulse initiation
because of the long transient process. Owing to limits in computing time,
numerical simulations may not answer whether soft mode locking is fea-
sible in a CW dye laser with a fast saturable absorber.

The numerical solution of the Maxwell–Bloch-type equations has con-
firmed the onset of bistability, which was revealed using the rate-equation
model of a travelling wave dye laser with a saturable absorber. However,
the alternative mode-locking regime is obviously the regime with a small
number of excited modes and with irregular change of the field profile
rather than the single-mode operation.

Many issues concerning the dynamics of lasers with nonlinear intracavity
elements have not been tackled in this chapter. The list includes the influ-
ence of self-focusing on processes in the laser. In particular, there is no
systematic analysis of the stability of single mode lasers in the presence of
self-focusing due to the nonuniform saturation of the active medium itself
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by the laser field.
Also beyond the scope of this chapter is a wide range of issues con-

cerning the nonadiabatic models of lasers with a saturable absorber. This
is due to the multivariable nature of this problem, which would require too
much space to be presented clearly in sufficient detail. Our neglect of this
topic is justified by the facts that the theory is not convincingly tied to
experiments and mathematical subtleties seem to outweigh the physical
results at present.
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Chapter 8

Giant Pulse Regime
(Q-Switching)
The peak output power of a pulsed laser increases, the more the initial
inversion exceeds the threshold level. In free running operation the devia-
tions from the threshold level do not go beyond several per cent and the
peak power of a solid-state laser is limited to tens of kilowatts. Consider-
ably more powerful pulses, called giant pulses, are obtained when lasing
is delayed for a time needed for a high inversion level to be reached [580].
The goal can be achieved by Q-switching of the laser cavity. In one method
the laser threshold is held high, while the population difference increases,
and the threshold is then reduced rapidly to the minimum possible level
once the required inversion is reached and an output pulse is desired. An
alternative method uses powerful pumping to ensure a sufficiently fast
growth of inversion. But the latter did not find application.

8.1 Active −Q switching
8.1.1. Active methods of generating giant pulses
Methods of the cavity Q-switching are divided into active and passive
groups. Active methods use modulation devices that change the cavity losses
by a given law or in accordance with an external control signal. Passive
modulating elements are those controlled directly by the radiation field in
the laser cavity.

Active modulation devices are also divided into two groups: opto-me-
chanical and electrooptical. The simplest modulator of the first type is a
punched disk of an opaque material [581]. Rotated around an axis parallel
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to the cavity axis, the disk blocks and opens the path between the mirrors
periodically. The Q-switching time provided by such a device cannot be
less than a millisecond. This value is considerable larger than the rise time
of a giant pulse, which is the main drawback of a disk modulator.

Much shorter switching times are achieved by rotation of one of the
reflectors around an axis perpendicular to the cavity axis [582]. A totally
reflecting prism is often used as a rotating reflector and the rib of the prism
is normal to the rotation axis. The turning angle at which the Q-factor of a
plane-parallel resonator is half the maximum is about 2′ [583]. At the rota-
tion velocity of 6·104 rpm the switching time is of order 10–7 s, which is
sufficient for the single pulse generation. A cavity with spherical mirrors
is not so sensitive to misalignment and its switching time is less than the
mentioned above. The effective rate of Q-factor variation by a rotating
element is reduced by optical imperfections of the laser rod [584].

Modulators of the second types are based on the electrooptical effect,
i.e., on the dependence of the normal mode refractive indices on an ap-
plied electric field [1,585]. A Kerr cell is an example of such an
electrooptical element, in which the effect is proportional to the square of
applied voltage. It consists of a cell filled with a liquid with a high Kerr
constant, such as nitrobenzene. Two parallel plane electrodes are immersed
in the liquid to produce a homogeneous electric field.

Figure 8.1 shows the scheme of a laser with the Kerr shutter. Linearly
polarized light is incident on the cell from the laser rod side owing to the
polarizer. As the light completes a roundtrip in the cell its polarization
changes depending on the electric field in the cell. Hence the intensity of
the light transmitted back through the polarizer to the laser rod side also
changes. The modulation depth is maximum if the principal directions of
the polarizers form the angle of 450 with the electric field vector.

The time for Q-switching by an electrooptical Kerr modulator is lim-
ited by the rate of voltage variation in the cell, which is mainly restricted
by the cell capacitance. The minimum switching time achievable by con-
ventional methods is 10–8 s.

The electrooptical effect is linearly proportional to the electric field
(the Pockels effect) in some crystals, and this is most pronounced in crys-

Fig. 8.1. The scheme of a laser with the electrooptical shutter: 1 and 5 – cavity mirrors;
2 – laser rod; 3 – polarizer; 4 – Kerr electrooptical cell.
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tals without a centre of symmetry, such as KDP, DKDP, ADP, LiNbO
3
, and

LiIO
3
. Crystal cells can be smaller in volume and, therefore, have smaller

capacitance. In addition, these crystals do not require such high control
voltages for reasonable effects. In application using electrooptical crys-
tals, switching times can be reduced to 10–9 s.

The Q-switching time is the most important characteristic of a loss modu-
lator. For each combination of values of the pumping power, the cavity
length, and the mirror losses, there is a critical rate that demarcate the
boundary between the domains of single pulse and multipulse lasing. For
example, variation of the behaviour of a ruby laser on the response of a
Kerr shutter was investigated experimentally in [586]. When the pumping
energy exceeded 2.6 times the threshold value, single pulses were gener-
ated for Q-switching while the duration of the applied voltage transients
remained below 100 ns. Above this limit several pulses were produced
and the total energy of these pulses were reduced.

The single pulse operation occurred in lasers with flash lamp pumping.
Continuous pumped lasers can generate periodic trains of giant pulses if
the cavity Q is subjected to deep periodic modulation. This has been ob-
served in Nd:YAG lasers [587, 588] and in molecular gas lasers [589–
591].

Such active Q-switching typically provides more uniform spatial struc-
ture of the laser beam and contributes to spectral broadening in compari-
son with free-running operation [587, 592]. However, the spectral and spa-
tial characteristics of emission may vary as the giant pulse develops. This
evolution is readily apparent for lasers with mechanical shutters in which
the cavity geometry is continuously varied. In a laser with a fast
electrooptical shutter it is not obvious that such evolution would occur but
it has been observed experimentally [593–596].The lasing first occurs in
the central (axial) part of the rod where the inversion is greater. Then emit-
ting region expands during 5–20 ns and the intensity maximum shifts to-
wards the rod boundary. The pulses emitted by the central and the periph-
eral parts of the active region are shifted in time and each of them is sev-
eral times shorter than the total pulse duration. Similar behaviour is ob-
served in Q-switched gas lasers [591]. Thus, quite generally, a giant pulse
represents the envelope of a succession of shorter bursts emitted by sepa-
rate parts of the active region.

To observe the fast pattern variations of an optical pulse one can use a
streak camera based on the electron-optical image converter (EOIC). The
chosen area of the beam cross-section can be electrically swept on the
EOIC display; thus, this device is faster than a streak camera with me-
chanical sweeping, which was mentioned in Section 1.2.3. An EOIC has
also been useful to measure the spatial coherence of pulsed laser emission.
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Temporal sweeping of the interference fringe pattern produced by two slits
shows the presence of short-duration space coherence. This is indicated
by the fixed position of the interference fringes during about one third of
the pulse length. Stabilization of the interference pattern was achieved by
introducing a small diaphragm into the laser cavity [595].

The development of a giant pulse in a ruby laser is accompanied by
irreversible drift of the emitted line frequency to the shorter wavelength
side. This effect was established by several authors [594,597,598]. The
magnitude of the frequency shift depends on the pulse energy and varies
from tens to hundreds of megahertz.

The features of giant pulse duration and energies have natural limits.
The maximum pulse duration is limited by the growth time of the spike
under linear and nonlinear amplification, while the minimum duration is
limited by the photon lifetime in the cavity, which governs the pulse de-
cay. The power of such giant pulses in solid-state lasers can reach 109 W.

8.1.2 Pulse Delay Time with Instantenous Q-Switching
Theoretical analysis of the emission process in single-mode lasers with
fast Q-switching is given in [229,246,599–605]. The factor that makes the
treatments much easier is the small, compared to T

1
, rise time of giant

pulses. Thus, we can neglect the relaxation and pumping processes and
make use of the set of equations:

    )()]([
d

d
loss SnnGnGm

m +=−− ετφ
τ , (8.1a)

            mn
n −=
τd

d
. (8.1b)

Equation (8.1a) is an obvious generalization of Eq. (3.51).
The giant pulse formation begins at the moment τ = 0 when the self-

excitation condition )0(lossφ>n  is satisfied. In the initial stage of signal
evolution the inversion is almost unchanged and the laser intensity grows
in accordance with the linear Eq. (8.1a), in which const0 == nn . The so-
lution of this is given by
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(8.2)
where m

0
 is the value of the fluctuating field intensity at the moment τ = 0.

We then assume that the Q-switching from one value to another is in-
stantaneous:
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Putting 0/dd =τm  in Eq. (8.1a) we find
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We substitute relations (8.3) and (8.4) into Eq. (8.2) and obtain, after integra-
tion
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A simplification is achieved at relatively large τ when 1)1( >>− τnG  and
(8.5) transforms to
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The second term in the brackets is small, since the losses before Q-switch-
ing typically are more than several times larger than the threshold value.

Formula (8.6) is valid until a certain value m
d
 is reached, which can be

found by inserting (8.6) into (6.1a) and integrating:
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The duration of this stage, which is the time delay of the pulse after the
Q-switching event, is found from the equality of (8.6) and (8.8):
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In calculating dτ  there is some arbitrariness in choosing dn , but the de-
pendence of dτ  on dn  is too weak to noticeably influence the result.
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Example 8.1
Ruby laser
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These estimates confirm that the assumptions of 1d >>τG  and the trans-
formation from Eq. (8.5) to Eq. (8.6) are reasonable.

We can use the formulas given above if the Q-switching time is small
compared to t

d
. From the example 8.1 we see that the switching time for

the shutter should be of order 10—100 ns.

8.1.3. Energy Characteristics of a Giant Pulse
A giant pulse is emitted at the stage when the field intensity in the cavity
exceeds the spontaneous emission level by many orders of magnitude. We
therefore can ignore the spontaneous emission and find the first integral of
Eqs. (8.1)

       )]/ln([ 212112 nnnnGmm −−=− . (8.10)

Putting 1,, 20101 === nmmnn  and assuming dmax2 mmm >>=  we
have:

  )ln1( 00max nnGm −−= . (8.11)

In the limiting case 110 <<−n  the logarithm can be expanded in a Taylor
series and Eq. (8.11) can be reduced to (3.33).

The maximum power loss including the output radiation is related to
the maximum field intensity in the cavity by cmax

max
output /TWP = , or, in dimen-

sionless form,

     )ln1( 00
2

max
max
output nnGGmp −−== . (8.12)

The quantity max
outputp  for a given initial value of the inversion, N(0), is not

monotonically dependent on the cavity Q-factor. To find the maximum of
this dependence we rewrite Eq. (8.12) in a more convenient form, by not-
ing that κ~G , and 1

thr0 /)0( −== κaNNn :

         )]ln(1[~ 112max
output

−− −− κκκ aap . (8.13)

The losses 0κ , which correspond to the value max
outputp , are found from the

condition 0d/d max
output =κp , which is equivalent to

0)ln(1 11 =−− −− κκ aa ,

or
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         00 ln21 nn =− . (8.14)

The equality (8.14) corresponds to the optimal initial excess of inversion
over the threshold after the switch is n

0
 = 3.5.

Using these formulas we can estimate the peak output power of a giant
pulse:
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In passing from the dimensionless form (8.12) to (8.15) we use relations
(3.77). From (8.15) it follows that a decrease in the cross-section of the
induced transition, for a fixed initial excess of the inversion over the thresh-
old, leads to an increase in the power of the giant pulse.

Example 8.2
Ruby laser
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During giant pulse generation the laser medium gives a total energy

 )( f0
1

p NNW a −= − ωβ � (8.16)

to the field. A ruby laser with the parameter values given in the example
8.2 emits an energy of about 3 J at pulse.

8.1.4  Pulse Duration and Shape
Substituting Eq. (8.10) into Eq. (8.1b) and integrating the resulting equa-
tion, we find the equality

∫ −−+
−=− −
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n nnnnmGn

n
G

d
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d
)(

00d
1dττ ,

which implicitly  defines the function )(τn  and thus )(τm  via relation
(8.10). Computed pulse shapes are shown in Fig. 8.2.

These results are of practical importance when the inversion exceeds
by several times the laser threshold immediately after Q-switching. In this
case there is an approximate method for calculating the pulse duration.

Let as demonstrate first that the inversion remains almost unchanged
until the laser intensity grows to 2/max1 mm =  and that the laser medium
saturates mainly in the subsequent period of time. To do this, we make use
of the equality (8.10), in which we put mmm =<< 21  and 01 nn = . Retain-
ing only the linear term of the expansion )/ln( 0nn  in a power series in
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00 /)( nnn −  we find
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The range of application of this formula is limited by the condition
)1( 0 −<< nGm . Using )ln1(2/ 00max nnGmm −−==  the equality (8.17)

takes the form
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The right-hand of (8.18) tends to zero as 10 →n  and to 0.5 as ∞→0n . The
optimal value 5.30 =n  corresponds to 25.0/)( 00 =− nnn i . Thus, using Eq.
(8.18) we will accurately define the population difference n

i
 at the mo-

ment when m reaches the value m
max

/2.
The time during which the pulse rises from 2/max1 mm =  to maxmm =  is

found by integration of (8.1b). The )(τm  variation law is unknown, but
the result is little sensitive to this law, since m varies by only a factor of 2
in this range. Assume that the laser intensity obeys the quadratic law

Fig. 8.2. Shape of the giant pulse of different initial exceeding of laser threshold [599]:
n

0
 = 1.65 (a); 2.72 (b); 4.48 (c); 7.40 (d).
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where p1τ   is the rise time. Then Eq. (8.1b) yields the time dependence of
the inversion
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from which it follows that
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The fall time from maxmm =  to 2/maxf mm =  is described by the function
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In a similar fashion we find
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where p2τ  is the fall time, fn is the inversion corresponding to 2/maxmm =
in the falling stage. The values n

i
 and n

f
 are related by

    iiff lnln nnnn −=− . (8.23)

If the fixed value maxmm =  is used instead of Eq. (8.19) end Eq. (8.21),
then the factor 6/5 is eliminated in (8.20) and (8.22).

Results of the calculation of p1τ  and p2τ  using Eqs. (8.18)–(8.23) are
presented in Table 8.1. Values obtained by numerical integration of Eqs.
(8.1) from [599] are given for comparison.

8.1.5. Angular and Frequency Spectra of a Giant Pulse with
Instantaneous Q-switching
Many modes are excited in a rapidly Q-switched laser unless mode selec-
tion is provided. Therefore, the question arises: What is the influence of
this fact on the temporal and energy characteristics of a giant pulse, as
well as on its angular and frequency spectra? In the case of a cavity uni-
formly filled with the laser medium, the mode composition, which was
formed at the linear stage, yields almost the whole information required
[605]. The mode composition is not constant, and the problem is much
more complicated, if the distribution of the inversion over the cavity cross-
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section is not uniform [604, 606, 607].
The equations of a Q-switched multimode laser in the case of spatially uni-

form inversion,
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follow from Eq. (4.45) under the assumption of a short duration of the
giant pulse.

Assumption that the Q-switching is instantaneous we approximate
)(loss τφ  by a step-wise function (8.3). The mode intensity growth during

the linear stage is described by Eq. (8.24a), the solution of which at 0nn =
is given by the function
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(8.25)
This expression can be simplified considerably, since 1,12 <<<<∆ kk β  and
these terms can be omitted everywhere except in the exponents, in which
we use the expansion 212 1)1( kk ∆−≈∆+ − . In addition, 1d >>τG , which
makes the exponential term in the curly brackets negligibly small. Thus, it
should be reasonable to replace (8.25) by the simplified expression

   ])(exp[)()( 2
00 τβττ Gnmm kkk +∆−= , (8.26)

83.08.03.03.0007.08.600.11

94.084.043.047.005.08.439.7

18.108.17.066.017.01.348.4

74.175.127.132.136.02.272.2

48.335.302.304.367.045.165.1
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Table 8.1



313

Giant Pulse Regime (Q-Switching)

where )(0 τm  is the intensity of the reference mode with 0=∆ k  and 0=kβ .
The function )(0 τm  coincides with (8.6).

The calculation of the pulse delay time is essentially the same as that
used in the single-mode problem. Introducing Eq. (8.26) into Eq. (8.24b)
and subsequently integrating leads to an equality that implicitly defines
τ

d
:
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The factor
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has the meaning of an effective number of excited modes, since from (8.26)

it follows that ∑= 0/
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The expressions for k∆  and β in the case of a plane-parallel cavity with
square mirrors are given in Section 4.1.2. The approximate calculation of
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~ τGN  is easy if these expressions are used and the summation is replaced

by integration:
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We now rewrite Eq. (8.27) as
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The coefficient C coincides with (8.7). This equation can be solved by
successive approximations. Putting first 1)( 2/3

d =−τG , we find τ
d
 in the

zeroth-order approximation. Then, inserting  2/3)( −(0)
dτG  into (8.29) we find

the first-order approximation
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Example 8.3
Ruby laser
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It is well known from the single-mode model analysis that the giant pulse
duration is much less than the delay time. Thus, it can be asserted that the
modes that dominate at the moment τ

d
 will define the laser characteristics

in the pulse maximum as well. These modes ensure uniform saturation of
the laser medium. The population difference will be suppressed to the
threshold value before the weaker modes have a chance to reach signifi-
cant strengths. Therefore, Eq. (8.26) with τ

 
= τ

d 
should accurately describe

the frequency and angular spectra during the giant pulse.
The width of the frequency spectrum at 1/e of its maximum value is

determined from the equality 12
d0 =∆ kGn τ , which is equivalent to

    2/1
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The angular divergence is found from the idea that the mode with the in-
dex r has the maximum in the direction br 4/λϑ ±= . The aperture angle,
within which the intensity falls to 1/e of its value in the forward direction,
is determined from the condition

            1d1 =τβ Gr . (8.32)

This equality together with (4.25), defines
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We can justify the assumption of smallness ,/1 dτG k∆  and kβ  for the
dominant modes. That 1d >>τG  is confirmed by our previous numerical
examples. From (8.31) and (8.32) it follows that the large value of dτG
ensures the smallness of k∆  and kβ .

Using Eqs. (8.31) and (8.32) we can find the number of longitudinal
and transverse modes that participate in lasing. At the same parameter val-
ues as those used for estimates in this section, we find 16.0<∆ k  and

1.0<kβ , while the maximum index is 15max =r , the number of longitudi-
nal modes is 200, and the divergence angle is 5.4 ′ .

The small difference in relative detuning and losses of the modes that
form the main group makes the analysis of the nonlinear stage much easier.
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Introducing the total field intensity ∑= kmm , we reduce Eqs. (8.24) to an
approximate set of equations, which coincide in form with the single-mode
laser equations. The accuracy of the approximation increases with decreas-
ing variation in the number of modes during the pulse. The variation ex-
pressed by (8.28) is a limiting one, such that
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The number of modes can be considered constant as long as the pulse du-
ration is small compared to the delay time. This means that the spectrum
and the divergence angle remain the same as at the moment τ

d
. In this

approximation Q-switching in a laser with spatially uniform pumping, the
initial conditions are the same for all modes. However, the rates of devel-
opment of these modes do not coincide because of their different losses
and their different detunings from the gain line centre. This leads to the
significant development of only a limited number of modes. During the
nonlinear stage, the modes of this group almost uniformly saturate the la-
ser medium in its entire volume. Thus, the excitation of other modes is
excluded.

8.2 Giant Pulse Generation with Passive Q-switching

Passive optical shutters use the ability of materials to change their optical
properties under the action of incident light. The crudest effect of this type
is the destruction of the material. The simplest passive shutter is an ab-
sorbing film placard in the laser cavity. When the power density of inci-
dent radiation reached the threshold value the film is evaporated thus open-
ing the mirror behind it. The cavity losses are sharply decreased and a
giant pulse is generated [608, 609]. There are also materials with increased
transparency from photochemical reactions [610]. The drawbacks of such
simplest shutters follow from the irreversibility of the processes, which
makes multiple uses of the devices impossible.

The idea of using media with saturable reversible absorption in quan-
tum electronics was proposed by Rivlin [611]. They were first used for the
giant pulse generation in a ruby laser. Coloured glasses [612] and solution
of cyanine dyes such as phtalocyanine [613] and cryptocyanine [614] were
employed as the nonlinear filters. Polymethine dye solutions [615] were
used for the same purpose in neodymium lasers. The dye should be se-
lected in such a manner that the laser frequency is within the intense ab-
sorption band. The flux density of radiation for which saturation is started,
range from 104–107 W/cm2.
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Specific components for passive Q-switching have a stronger effect on
the spectral and spatial characteristics and a weaker effect on the energy
and shape of the pulses. When a passive shutter in the form of a saturable
absorption cell is used, the spatial structure of the light beam exhibits a
strong inhomogeneity. In a cavity with spherical mirrors this structure cor-
responds to an individual transverse mode, most often a higher order [616,
617]. In a plane-parallel cavity the field is divided into filaments [618]. As
for the case of an electrooptical cell, the lasing action starts in the central
part of the laser rod and then spreads to the periphery [593, 618]. How-
ever, it should be noted that field spreading is exhibited only in the case of
transversely nonuniform pumping of the laser rod. The use of a pumping
device in order to provide an uniform inversion removes the difference in
duration of the pulses emitted from the whole of the laser rod cross-sec-
tion and from any part of it [619]. The radiation spectrum of a laser with
saturable absorber is extremely narrow [618, 620].

The model of a multimode laser with passive Q-switching can be easily
obtained by generalization of the rate equations (7.11) to this case and
adding the terms that take into account the mean spontaneous emission
background [353]:
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d

d
.

A wide absorption spectrum of the nonlinear filter makes it possible to
neglect the difference of frequency of the laser modes. The variable n

a
 is

defined as n
1a

–n
2a

 and is, therefore, positive.
During the nonlinear stage the presence of an absorber does not add

any other specific features. Thus, the results, obtained in Chapter 4 for
free running, are fully applicable here. The long delay time in the pulse
leads to a considerable mode discrimination [353, 354]. In a plane-parallel
cavity the leading group includes tens of longitudinal and a few transverse
modes before the beginning of the nonlinear stage. A single-mode regime
occurs when

emmk /1)(/)( d0d <ττ

and, therefore, the mode losses differ by more than
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The parameter values 11,10,10 10
min

5 ≈−−== −
aAAmG  correspond to

4
1 105 −⋅=β .

Thus, small mode discrimination is sufficient to suppress a particular
mode. Hence, random or uncontrolled factors may have a profound effect
on the optical spectrum and optical field structure in a giant pulse.

Both the pulse energy and shape can be determined using a single-mode
model. The only major deficiency is that it will not take into account the
influence of the nonuniform distribution of pumping over the laser rod.
The theory of a giant-pulse single-mode laser with saturable absorber was
developed in [246, 621–625]. The case of nonlinear filter with relaxation
time longer than the pulse duration has been analyzed in the most detail.
Under this condition Eqs. (8.34) reduce to
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From the last two equations of (8.36) we find

         ρ)~/(~ nnnn aa = . (8.37)

where aa An ≈~  and aAn +≈1~ . Using Eq. (8.37) we eliminate the variable
n

a
 from these equations and reduce (8.35) to a second-order set of equa-

tions
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Here m~  is the value of m which correspond to nn ~= . In contrast to Eqs.
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(8.10), which describes the model of laser with instantaneous Q-switch-
ing, Eqs. (8.39) has an additional term in the right-hand side. However, for

1>>ρ  this addition is inessential and

              )]1ln([)~ln1~(max aa AAGnnGm +−=−−≈ . (8.40)

The coincidence of Eqs. (8.39) and (8.11) is not accidental. Since the non-
linear filter is saturated much easier than the laser medium ( 1>>ρ ), the
giant pulse is developed under the same conditions as with instantaneous
Q-switching.

Equations (8.36) are not adequate for describing the processes in the
laser with a nonlinear filter having small relaxation time. To be more pre-
cise, the last equation of (8.36) is not valid, since the derivative τ/dd an
rather than the relaxation term is a small quantity in this case. The last
equation of (8.34) should be written as

m

A
n a

a )/(1 δρ+
= ,

and instead of Eq. (8.36) we should write the equations
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Complete saturation of the nonlinear filter is achieved if ρδ /max >>m .
Since maxm  can never exceed the value defined by Eq. (8.40), the neces-
sary condition for saturation of the filter is given by

        )/( ρδ GAa >> . (8.42)

Typical of solid-state lasers with passive Q-switching are the values
543

1 10Gs,1010 =−≈ −−T  1,104 ≈≈ aAρ  for which the inequality (8.42) re-
quires s10 12

1
−>>aT .

Equations (8.41) have been solved by numerical method [622]. Calcu-
lations have shown that under the condition (8.42) the shape and energy of
a giant pulse are very weakly dependent on the population relaxation time
in the absorber.
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The concept of induced inversion gratings is mostly simply realized in the
basic models of multimode lasers if the consideration is limited by the set
of longitudinal modes

)sin(2 ζπψ kk q= .

Here we must distinguish cases of large ( κ>>∆c ) and small ( κ<<∆c )
intermode frequency spacing.

The starting point for further transformations is the set of equations
(4.2) that might be described using the time normalization condition t||γτ =
in the form
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In the case of large intermode frequency spacing and many modes it is
convenient to take the reference frequency ω  equal to 0ω , so that 00 =∆ .
Let us introduce the quantity

∫∫ ==
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d)sin(2d ζζπζψ lll qppp ,

that represents the amplitude of the polarization grating. Now we can re-
write the equation (S.1a) in the form
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Let us multiply Eq (S.1b) on jψ  and integrate on the cavity perimeter that
leads us to the equation

 ( )∑ +− += jljlj
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p
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d
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γτ . (S.3)

So far as the field and polarization amplitudes have the time dependence
like )exp( τki∆− , the procedure of adiabatic elimination of the polarization
amplitude leads to the relation
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Note that 0nnkk =−  and kkk nn =+ . Bearing this in mind we can rewrite (S.4)
as
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Next, using obtained results, we will transform Eq. (S.1c) into equations
for the inversion gratings amplitudes
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As in Eq. (4.1.1), we ignore the combination sums in Eq. (S.6) when we
substitute jp  in Eq (S.7) as well as the spatial harmonics that exceed the
bounds of the spectrum of lasing modes, and use the condition of har-
monic balance for terms with the time dependence like

]~/)(exp[~ γνµµν ∆−∆−− in . This results in the expression
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Similar expression we find also for +
µνn . Using Eq. (S.8) into Eq. (S.6)

bring us to the final formula for gain in presence of four-wave mixing
(combination tone mode coupling):
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Using Eq. (S.9) in Eq. (S.2) we come to equation
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Together with the material equations
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The equation (S.10a) forms a closed set. It reduces to Eq. (4.10) if we
ignore the combination sum in Eq. (S.10a). This set of equations is a par-
ticular case of Eq. (4.9), but one needs to bear in mind that kkn  in Eq. (4.9)
corresponds to knn +0  in Eq. (S.10).

Equations of the two-mode laser model with a small frequency spacing
between longitudinal modes can be obtained starting from the same set
(S.1). However, it is more convenient to use the frequency of one of modes,
ω

1
, as the reference one. Therefore, instead of (S.4) we have
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The small value of the intermode frequency spacing excludes the possibil-
ity to express explicitly −

µνn  and +
µνn  through other variables like (S.8).

We can only write differential equations for these variables. this simple
procedure leads to the set of equations for the two-mode laser model with
the phase-sensitive interaction
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(S.12e)
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Notations
a Beam radius
a

0
Unperturbed value of the beam radius

a
j

Coefficient of characteristic equation
A Pumping parameter
A

0
Normalized initial density of a saturable absorber

cr
aA Critical value of A

0
 corresponding to laser instability threshold

lock
aA Saturable absorber density corresponding to mode locking

threshold
A

cr
Pumping parameter at the second laser threshold

b Mirror radius
B Magnetic induction vector
B Einstein coefficient
c Velocity of light in vacuum
c’ Velocity of light in a material
d Dipole moment vector
d

mn
Matrix element of dipole operator

d Dipole momentum modulus
d

dif
Normalized diffusion coefficient

D Electric induction vector
D Inversion (population difference)
D(0) Unsaturated value of inversion D
Dλ Spatial harmonic of the inversion
eλ(t) Time-dependent coefficient of the electric field modal

decomposition
E Electric field intensity
E

damp
Fast-damping component of the filed in an open cavity

E
0

Amplitude of electric field
Eλ(r) Electric eigenfunction of a resonator
F Complex field amplitude
F±1

Amplitudes of counterrunning waves
f Normalized complex field amplitude
fλ Normalized mode amplitude
f± Normalized amplitudes of counterrunning waves
F Focal length
F

0
Unperturbed value of effective focal length

F
nl

Focal length of a nonlinear lens
Fλ Mode amplitude
F

sat
Saturation value of the field amplitude

F
coh

Field amplitude corresponding to coherent field-matter
interaction

Fdisp Function which characterizes a system dispersion

Notations
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Fnl Function which characterizes a system nonlinearity

F
~ Complex Lorentzian function

G Big parameter in the class B laser theory
netG Net gain (difference between gain and loss)

balG
~ Balance (rate equations approach) part of the mode gain

combG
~ Combination tone part of the mode gain

h Distribution function
hλ(t) Time-dependent part of the magnetic field modal decomposition
H Magnetic field intensity
Hλ(r) Magnetic eigenfunction of a resonator
H Hamiltonian
j Current density vector
k Wave number
k⊥ Transverse component of the wave number
k

B
Boltzmann constant

k
gain

Gain factor
K

loss
Amplification factor of loss modulation

K
pump

Amplification factor of pump modulation
K

total
Transfer function for the total intensity of a multimode laser

K
j

Transfer function for individual mode intensity of a multimode
laser

l Normalized cavity length
L Cavity length in cm
L

s
Laser medium (sample) length

L
cr

Critical value of the cavity length
L

nl
Nonlinear medium length

L’ Effective (optical) cavity length

L
~ Lorentzian line shape

m Normalized number of photons; normalized field intensity

m Steady-state value of m

m~ Amplitude of intensity response to parameter modulation; quasi-

steady-state value of the intensity in a laser with monotonically
varied parameter

±mm ,0 Steady states

M Magnetization vector
M Number of photons
n Unit vector in normal direction to a surface
n Normalized inversion

n Steady-state value of the inversion

n~ Amplitude of inversion response to parameter modulation;

quasi-steady-state value of the inversion in a laser with
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monotonically varied parameter

2n Normalized population of one of laser levels

rn Amplitudes of inversion gratings

sn Normalized molecule density

an Normalized population difference in an absorber

dn Inversion arrives at the end of linear stage of pulse formation

+
jln Amplitudes of small-scale inversion gratings

−
jln Amplitudes of large-scale inversion gratings

N Population difference (inversion) per unit of volume
N

s
Total number of molecules per unit of volume

N
eff

Effective value of inversion
N(0) Unsaturated value of N
p Normalized complex amplitude of polarization in an atomic

system
P Polarization vector
P Complex amplitude of polarization of an atomic system
P±1

Complex amplitude of counterrunning polarization waves
P

out
Output laser power

q Inhomogeneous broadening parameter; quadratic variable
Q Quality factor
Q

c
Quality factor corresponding to coupling losses

Q
s

Quality factor corresponding to losses in resonator walls
Q

v
Quality factor corresponding to distributed bulk losses

r Position vector
r Quadratic variable
r, r± Counterrunning wave coupling coefficients
r

cr
Critical value of the coupling coefficient

R Mirror reflectivity; Parameter proportional to the total number
of molecules in the theory of three-level laser (Sec. 3.3)

s Quadratic variable; Parameter in the theory of inhomogeneously
broadened laser (Sec. 4.5.)

S Surface; Sum of energy level populations
t Time
t
d

Delay time
t
a

Lifetime of a molecule at the energy level
t
cor

Time of correlation
t
trans

Time constant of transition to aperiodic process in a gaseous
laser

Notations
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T Temperature
T Period
T

1
Lifetime of the inversion (“longitudinal” relaxation time)

T
2

Time constant of the dipole-moment decay (“transversal”
relaxation time)

T
c

Photon lifetime in the cavity
T

0
Cavity round trip time

T
p

Pulse duration
u Normalized velocity
U Velocity (cm per second)
U

0
Most probable value of molecule velocity

v Normalized volume
v

s
Sample volume

V Volume
V

refl
Velocity of a moving reflective surface

V
1

Resonant value of the velocity of a moving reflective surface
inside a laser cavity

V
eff

Effective velocity of cavity lengthening

mnw Rate of the relaxation transition from level m to level n

jw Decay rate of j-th atomic level

spW Rate of spontaneous emission in a cavity mode

pumpW Rate of the quantum transition induced by pumping

jW Rate of the pumping transition at the j-th atomic level

W Energy

0W Band-gap energy

x,y,z Cartesian coordinates
Z Impedance
α Laser line width enhancement factor

β Normalized losses

aβ Effective change in the population difference per one event of

photon emission

sc−β Index of the transition cross-section modulation

crβ Parameter modulation index above which the laser response is

considerably nonlinear

kβ Losses specific for the k-th mode
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lossβ Index of the loss modulation

pumpβ Index of the pump modulation

NRβ Amplitude nonreciprocity of a ring cavity

±β Deviations of counterrunning wave losses in a ring laser from

the mean

||γ Inversion relaxation rate

⊥γ Dipole moment polarization relaxation rate

γ̂ Dimensionless relaxation rate

γ~ Dimensionless cross-relaxation rate

2,1γ Complex parameters

Γ Cross-relaxation rate

Γ~ Normalized cross-relaxation rate

δ Parameter in the theory of lasers with a saturable absorber

µνδ Kronecher symbol

xδ Deviation of a current value of variable from its mean

selδν Longitudinal mode selector half bandpass

cδω Cavity bandpass

Dδω Doppler line halfwidth

)( 00 δνδω Homogeneous line halfwidth

)( inhinh δνδω Inhomogeneous line halfwidth

ω∆ Intermode frequency spacing

∆ Dimensionless intermode frequency spacing

ck∆ Relative detuning of the k-th cavity mode from the spectral line

centre

cr∆ Critical detuning at the instability threshold

k∆ Relative detuning of the k-th component of the field from the

gain line centre

sel∆ Laser spectrum halfwidth

Notations
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las∆ Detuning from the selector band centre

NR∆ Phase nonreciprosity of a ring cavity

0∆ Detuning of the field frequency from the line centre

'∆    Relative interval between frequencies of two components of

gain line

0'∆ Relative detuning of oscillating frequency from frequency of a

weaker component of the gain line

c∆ Detuning of field frequency from the cavity mode

±
c∆ Detuning of field frequency from the ring cavity modes

ϑ∆ Angular divergence of laser radiation

kτ∆ Delay of the k-th mode with respect to the reference mode

Dω∆ Doppler frequency shift

ε Permittivity of material

spε Average rate of spontaneous emission into cavity mode

2,1ε Parameters of ellipticity of eigenfunctions

ζ Dimensionless Cartesian coordinate

η Index of refraction

20,ηη Coefficients of field power expansion of refraction index

BA ϑϑ , Decrements of phase-sensitive relaxation oscillations

0ϑ Rate of aperiodic transitional process in a gas laser

1ϑ Decrement of the fundamental relaxation oscillation

1, >kkϑ Decrements of low-frequency relaxation oscillations

ϑ Angle

±ϑ Phases of the scattering coefficients of counterrunning waves in

a ring cavity
κ Photon decay rate in the resonator

κ̂ Dimensionless photon decay rate

κ~ Ratio of field relaxation constant to polarization constant

±κ Photon decay rates for the modes of a ring cavity
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λ Wavelength

jΛ Parameter of the j-th level excitation by a pumping source

)(uΛ Differential parameter of pumping of a inhomoheneously

(Doppler) broadened medium

thrΛ Threshold value of the differential pumping parameter of an

inhomogeneously broadened laser
µ Permeability of material

ν Frequency

selν Frequency of a selector

ξ Filling factor

±ξ Coupling (scattering) coefficients of counterrunning waves in a

ring cavity

loss∏ Relative single-pass cavity losses

diffr∏ Relative single-pass diffraction losses

ρ Density matrix

±ρ Counterrunning wave complex coupling coefficients

σ Conductivity

mnσσ , Amplitude of the density matrix element

mn
0σ Density matrix in the state of thermal equilibrium

trσ Transition cross-section

τ Normalized time

0τ Time spacing between pulses

dτ Delay time

pτ Pulse duration

Φφϕ ,, Phases

eϕ Phase of the electric field

pϕ Phase of the atomic polarization

χ Susceptibility

Y Opto-electronic feedback coefficient

Notations
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kψ Cavity eigenfunctions

ω Frequency in radian frequency units

Ωω,~ Dimensionless frequency

ckc ωω , Cavity eigenfrequency

±
cω Eigenfrequencies of a ring cavity

0ω Line centre frequency

Rω Rabi frequency

BA,Ω     Frequencies of phase-sensitive relaxation oscillations in a ring

laser

1Ω Frequency of the fundamental relaxation oscillation

1, >kkΩ Frequencies of antiphase relaxation oscillations
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GLOSSARY

Abbreviated equations are equations for slowly changing amplitudes and phases of
a oscillatory system which are obtained by averaging an initial set of equations with
respect to the period of high reference frequency having the same scale as the
frequency of eigen oscillations of the system.

Adiabatic rapid passage is a process of achieving population inversion by sweeping
the mismatch between a pump radiation frequency and a quantum transition
frequency with passing through resonance. The lower limit of the detuning rate is
the relaxation constants of the atomic system, whereas its upper limit is the
adiabatic condition, which retains quasi-equilibrium between the state of the atomic
system and radiation field during the whole process.

Andronov-Hopf bifurcation is crossing the boundary of instability of a system at
which the sign of the real part of the complex characteristic root reverses and above
which the undamped self-modulation regime sets in. The bifurcation can be either
subcritical when the finite amplitude of oscillations jumps to set in immediately
above a bifurcation point or supercritical when the amplitude of intensity
oscillations is infinitely small at the instability threshold but grows as the control
parameter moves away from the bifurcation point.

Attractor is a set in the phase space where the trajectories remain. This zone of the
phase space attracts all the trajectories originating inside a certain region called its
basin of attraction.

Attractor crisis is the phenomenon of a sudden expansion, contraction or
disappearance of the attractor when a control parameter is varied. It may result from
the collision (or coalescence) of two attractors or a collision between an attractor
and the unstable manifold.

Attractor dimension is a notion which is best illustrated by specific examples. An
infinite set of generalized dimensions d

k
 (k = 0,1,2…) can be defines as

l-k

p
d i

k
i

l
k log)1(

log
lim

0

∑
→

= ,

Here l is the edge length of each hyper-cubic cell on which the phase space under
consideration is divided, p

i
 is the probability of finding a phase space trajectory in

the cell number i.

The d
0
 dimension is so-called Hausdorff dimension: l

lN
d

l log
)(log

lim
0

0 →
=

Where N(l) is the minimum number of cells required to cover the object. For regular
objects, such as a point, a line segment, a surface or a body in ordinary space, the
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value of d
0
 is given by an integer number 0, 1, 2, 3, i.e., the Hausdorff dimension

coincides with the geometric or topological dimension. When an attractor is fractial,
it is called a strange attractor.

The first-order dimension  
l

pp
d i ii

l log

log
lim

0
1

∑
→

=

involves an entropy-like quantity ∑ i ii pp log . For this reason, d
1
 is called the

information dimension.

The second-order dimension is given by   
l

p
d i i

l log

log
lim

2

0
2

∑
→

=

For large N, the sum ∑ i ip2
 represents the probability that any pair of points

belonging to a given set lie in the same cell. This approximately coincides with the
correlation integral which gives the probability that any pair of points is separated
by a distance smaller than l. for this reason, d

2
 is known as correlation dimension.

The practical algorithm for computing d
2
 was developed by Grassberger and

Procaccia [375,376].

Bad cavity condition consists in the fact that the bandwidth of a laser cavity is of the
same order or higher than the gain linewidth of an atomic system.

Bifurcation is a transition from one structurally stable phase portrait to another
through a structurally unstable state as the control parameter is changed.

Bistability is the situation when the phase space of a dynamical system contains two
attractors.

Bloch’s vector is the generalization of a magnetization vector of a paramagnet for a
two-level system of arbitrary nature. Components of the Bloch’s vector for two-
level medium with electrodipole transition include the difference in population of
the levels and the polarization.

Coherent interaction is an interaction of a field with an atomic system that is in a
coherent state.

Coherent state is a thermodynamic non-equilibrium state of an atomic system
characterized by the presence of a non-zero nondiagonal element of density matrix
(of coherence), which is equivalent to the presence of a transverse component of the
Bloch’s vector or, in other words, polarization of the medium oscillating with the
quantum transition frequency.
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Combination mode locking is the phenomenon which is conditioned by the
combination tone mode-mode coupling and consists in a nonlinear frequency shift
due to which the equidistant spectrum of generation is achieved in spite of an
initially non-equidistant spectrum of eigenfrequencies of the laser cavity.

Combination tone mode-mode coupling is the phenomenon in which each pair of
laser modes initiates population oscillations of laser levels at a beat frequency and
due to scattering of the field of the third mode at these oscillations, there occurs a
frequency-shifted component – the combination tone. When in the spectral vicinity
of a fourth mode, the combination tone acts as a driving force; as a result, all the
four modes become coupled.

Dynamical or deterministic chaos is a nonperiodic process in noise-free systems
with a finite number of degrees of freedom which is distinguished by the high
sensitivity of the individual realization to the initial conditions.

Feigenbaum scenario (or route to chaos) consists of a sequence of period-doubling
bifurcations as a control parameter is changed. This is characterized by certain
scaling of the control parameter range for each type of periodic orbit and of the
relative strength of different spectral components.

Fixed point is a point in the phase space which corresponds to a steady state (time
independent solution) of a dynamical system.

Four-wave mixing, see Combination tone mode-mode coupling.

Fractals are geometrical objects having a value for their dimension which is not an
integer.

Free running mode of operation is a mode of lasing in the absence of external
stresses on a laser.

Generalized multistability is the situation when the phase space of a dynamical
system contains more than two attractors and at least one of them is not a fixed
point.

Giant pulse is a powerful short pulse emitted by a laser after an abrupt switching off
the excess losses which were purposefully introduced into a laser cavity to prevent
generation until a required population of the upper laser level is achieved.

Ground state is a state of a molecule (atom) having the lowest energy.

Hard excitation of oscillations occurs in case of optical bistability when the absence
of lasing corresponds to one of stable steady-state. In this case laser action can be
initiated only by injecting a quite powerful seed radiation into a laser cavity.

Glossary
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Hard mode locking occurs when a threshold of multimode generation is higher than
the mode locking threshold. For this laser to be in the regime of stable generation of
ultrashort pulses, it is necessary to inject an initiating pulse in its cavity.

Intermittency route to chaos from a periodic solution is characterized by the fact
that when the control parameter exceeds a critical value, the regular oscillations in
the dynamical system appear to be interrupted at random times by bursts of irregular
behavior. The duration of the chaotic phases is fairly regular and weakly dependent
on the control parameter, but the mean duration of the regular phases decreases as
this parameter increases beyond its critical value, and eventually they disappear.

Inverse problems of laser dynamics are ways of determining laser parameters by
peculiarities in the dynamical behavior of a laser.

Intracavity laser spectroscopy is a highly sensitive technique of absorption
spectroscopy in which a medium with narrow spectral lines is placed inside the
cavity of a multimode broadband laser. The absorption spectrum being studied is
displayed in the spectral profile of laser generation.

Kinematic modulation is a modulation of laser field at a Doppler shift frequency,
resulting from the appearance of an intracavity component that is reflected from a
moving surface.

Linear stability analysis is a method used to investigate the stability of regular
(steady-state or periodic) solutions of dynamical systems. This method consists in
linearization of the equations around the solution in question and in a subsequent
exploration whether an initial perturbation is damped or increases with time.

Limit cycle is a closed orbit in the phase space which corresponds to periodic
oscillations in a dynamical system.

Low-frequency coherence is a non-diagonal element of density matrix which
characterizes the superposition of closely situated levels of a quantum system.

Lyapunov exponents give a measure of the rates at which the components of the
distance between two close phase space trajectories change with time. The
magnitudes and signs of the Lyapunov exponents allow one to distinguish among
periodic, quasi-periodic and chaotic attractors. In the first cases these is no
exponential separation of initially close trajectories and all Lyapunov exponents are
negative or zero. Existence of at least one positive Lyapunov exponent is a clear
sign of a strange attractor (chaos).

Multistability is the situation when the phase space of a dynamical system contains
more than two attractors.
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Natural fluctuations are fluctuations in a system which are caused by sources that
cannot be avoided in principle, such as spontaneous transitions in an active medium
and thermal radiation in a laser cavity.

Nonisochronity is the dependence of oscillation frequency in a nonlinear system on
amplitude of oscillations.

Nonlinear lens is a nonuniform profile of the refractive index which is induced in a
transparent nonlinear medium.

Nonreciprocity is the situation when conditions of counterrunning wave propagation
in a ring cavity are different. At amplitude nonreciprocity, losses of counterrunning
waves are unequal, whereas at phase nonreciprocity their phase rates are unequal.
The phase nonreciprocity results from, for example, the Sagnac effect in a rotating
ring laser cavity or an interferometer. The amplitude nonreciprocity can be obtained
by introducing an isolator with a Faraday cell into a laser cavity.

Passive Q-modulation is a change of Q-factor due to saturation of absorption in a
medium inside a laser cavity by generating radiation.

Phase diagram is a separation of the space of parameters of a dynamical system
into areas with qualitatively different behavior.

Phase space trajectory is a path connecting the variables in the evolution of the
system on which the direction of motion is defined.

Phase portrait of a dynamical system is a family of integral curves in the phase
space.

Quasiperiodisity is an oscillatory process whose spectrum includes components
with incommensurable frequencies.

Rabi oscillations are nutational oscillations of the Bloch’s vector which are excited
when an atomic system is placed in a fairly strong resonance field of radiation.
Frequency of Rabi oscillations is proportional to an amplitude of the field and a
dipole moment of the quantum transition. The oscillations are observed if the Rabi
frequency exceeds the rate of all relaxation processes in the medium.

Relaxation oscillations are damped oscillations of radiation intensity and
population inversion when the steady-state lasing mode in class-B lasers sets in.

Resonance modulation of laser parameters is a modulation of parameters with
frequency coinciding with some of eigenfrequencies of a system, for example, with
a relaxation oscillation frequency, intermode beat frequency, etc.
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Roell-Takens scenario is a transition to chaos characterized by the presence of a
stage of quasiperiodic oscillations on the route from regular to chaotic behavior.

Secondary beats are the difference of frequencies of beats (beats of beats) of
spectral components of radiation. They occur in multimode lasers with a non-
equidistant lasing spectrum.

Second laser threshold is a bifurcation value of a control parameter which corresponds
to an instability threshold of steady-state lasing.

Strange attractor is an attracting set in the phase space with no stable trajectories
on it. This means that any trajectories started from closely located points of the
phase space diverge so that the distance between them increases exponentially with
time. Since the usual trajectories cannot intersect, a strange attractor exists only in a
phase space with three or dimensions although the strange attractor itself may have
a smaller dimension (though greater than two). A strange attractor corresponds to a
nonperiodic process in a nonlinear dynamical system.

Superradiance is radiation of an electromagnetic field of a quantum system being in
a coherent state. Intensity of the superradiance is proportional to the square of the
number of active molecules.

Technical fluctuations are stochastic changes in radiation characteristics caused by
fluctuations of laser parameters whose mechanism may be mechanical vibrations of
units, occasional changes of temperature, etc.
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